Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert
2501	F	68.6	60.41	8.19
2502	F	66.81	61.01	5.8
2701	F	62.71	58.88	3.83
2702	F	63.33	59.24	4.09
2801	F	62.54	58.65	3.89
3501	F	65.78	60.02	5.76
3601	F	64.08	59.49	4.59
4501	F	-	-	-
4502	F	-	-	-
4503	F	-	-	-
4504	F	-	-	-
4800	F	-	95.37	-
4901	F	64.41	59.19	5.22
5500	F	-	-	-
5801	F	65.64	59.93	5.71
6501	F	66.31	64.9	1.41
6502	F	-	-	-
6701		66.05 CC 75	60.5	5.55
7501		66.75	63.41	3.34
7502	r' E	00.04 66.72	03.12 65.52	3.32 1.21
7503	r F	66 62	00.02 65.22	1.21
7601	r F	67.37	-	1.08 -
7602	F	67.26	61 95	5 31
7701	۰ F	67.18	61 37	5.81
8501	' F	65.87	64 65	1 22
8502	F	66.13	64.36	1.77
8503	F	65.84	63.98	1.86
1852	S	62 49	59 74	2 75
2551	S	-	61.12	-
2651	S	63.75	60.26	3.49
2751	S	62.73	60.14	2.59
3551	S	-	60.66	-
4551	S	-	-	-
4552	S	-	-	-
4553	S	-	-	-
4554	S	-	-	-
4951	S	63.93	60.28	3.65
5551	S	-	-	-
5552	S	-	-	-
5851	S	65.61	61.67	3.94
5852	S	-	-	-
5853	S	65.61	61.33	4.28
5854	S	-	-	-
6551	S	66.38	64.8	1.58
6552	S	-	64.54	-
6553	S	66.33	64.09	2.24
6554	S	66.03	-	-
6555	S	•	-	-
6751	S	66.2	62.25	3.95
7551	5	66.79	63.38	3.41
7552	5	66.67	63.36	3.31
1003	ວ ເ	-	04.88	-
1 004 7555	5 C	00.04	04.84	1.7
7556	ა c	00.40	04.07 64.49	1.79
7000	5 6	00.70	64.48	2.28
7651	S	67.36	04.20 63.04	2.30 4 32
7652	с С	67.59	62.79	4.52
7751	S	67.7	62.54	0 5 16
8551	S	66	64.23	1.77
8552	S	65.83	64.04	1.79
8553	S	-	64.27	-
8554	S	66.1	63.82	2.28
8555	S	65.82	63.64	2.18
8556	S	-	64.91	-

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert

e Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert

Appendix F

RSK Report ref: 313114-02 (00) Willen Road, Newport Pagnell Geotechnical and Geo-environmental ground investigation – Phase 2 June 2017, Section 8.3;

^{\\}Npt-vfps-001\npt\Projects\38748 Caldecote Farm, Newport Pagnell\Word\Technical Notes\Surface Water\TN2015-001 Rev B SW Drainage Strategy Technical Note FINAL.docx

8.3 Geotechnical

The exploratory holes revealed that the site is underlain by a variable thickness of made ground comprising various types of backfill over Felmersham Member and Glacial Till, with Peterborough Member encountered at depth.

The natural strata deposits and Peterborough Members were encountered at depths of between 1.0m and 4.90m bgl, but generally below 3.0m bgl, although they were found to be shallower in the north east of the site.

Foundations would need to be deepened and be taken down through the Made Ground to varying depths of between 1.00 and 4.30m bgl into suitable strength strata. In doing this there are numerous practical considerations, which, would constrain and may potentially preclude the use of a traditional deepened spread foundation. Therefore, when considering the above issues, it is anticipated that the use of traditional deepened spread foundations may not be economic, thus it is anticipated that a piled solution will need to be considered for structural foundations.

Typical pile working loads vary from 262 kN on a 350mm diameter pile at 10 mbgl to 480 at 15 mbgl. If higher loads are required than a typical pile working load of 536 kN using a 600mm diameter at 10 mbgl pile increasing to 929 kN at 15 mbgl. A full breakdown the typical pile working loads is presented in Table 24.

When considering floor slabs for buildings of this size suspended floors acting upon the foundations are not normally economic due to the widths between spans and loads carried. Therefore, ground bearing floor slabs are the only real option. When taking into account the variable depths of uncompacted and unconsolidated fill present it is clear that ground improvement or piling of the variable made ground beneath the floor slabs would be necessary to support the slab and reduce the risks of differential settlement and bearing capacity failure from occurring. At this stage, based upon the information available it is suggested that ground bearing floor slabs would need to be supported on piles or would require ground improvement or a combination of compaction and surcharging to make them viable and avoid differential settlement risks.

From consideration of sulphate content results the Design Sulphate Class of DS-5 AC-5 may be assumed for design purposes for foundations.

One soakaway test was completed in TP138 in the southeast of the site due to access restrictions. This soakaway was undertaken in clayey silty sand and gravel of the Felmersham member but recorded no drop in water level during the test. It is therefore deemed that a soakaway drainage system will not be feasible on the site.

Appendix G

FEH Data;

^{\\}Npt-vfps-001\npt\Projects\38748 Caldecote Farm, Newport Pagnell\Word\Technical Notes\Surface Water\TN2015-001 Rev B SW Drainage Strategy Technical Note FINAL.docx

VERSION	"FEH CD-ROM"	١
CATCHMENT	GB	
CENTROID	GB	
AREA	6.625	
ALTBAR	79	
ASPBAR	46	
ASPVAR	0.57	
BFIHOST	0.302	
DPLBAR	2.53	
DPSBAR	22.7	
FARL	0.888	
FPEXT	0.1242	
FPDBAR	0.729	
FPLOC	0.568	
LDP	5.21	
PROPWET	0.3	
RMED-1H	10.6	
RMED-1D	29.2	
RMED-2D	36.5	
SAAR	611	
SAAR4170	627	
SPRHOST	50.15	
URBCONC1990	0.615	
URBEXT1990	0.2002	
URBLOC1990	0.969	
URBCONC2000	0.758	
URBEXT2000	0.2438	
URBLOC2000	0.965	
С	-0.02629	
D1	0.34714	
D2	0.24911	
D3	0.28014	
E	0.30917	
F	2.43649	
C(1 km)	-0.026	
D1(1 km)	0.34	
D2(1 km)	0.262	
D3(1 km)	0.276	
E(1 km)	0.31	
F(1 km)	2.433	

486133

241280 SP 86133 41280

30-Jan-18

Subject:	Preliminary Surface Water Drainage Strategy – Supplementary Information
Prepared By:	J Balzer
Date:	12 th February 2020 – Updated 28 th July 2021
Note No:	TN2028/001 Rev B
Job No:	38748
Job Name:	Land at Caldecote Farm, Newport Pagnell

ltem	Subject
1	Introduction
	This Technical Note has been prepared by Stantec UK Ltd on behalf of Newlands Developments in response to comments raised by Milton Keynes Council (MKC) Lead Local Flood Authority (LLFA) following their review of the surface water drainage strategy prepared to support a planning application for the proposed development Land at Caldecote Farm, Newport Pagnell (Planning ref. 19/02402/FUL).
	This Technical Note should be read in conjunction with Technical Note TN2015/001 Rev B – 'Preliminary Surface Water Drainage Strategy' updated July 2020, submitted as part of the planning application.
2	Milton Keynes Council Lead Local Flood Authority Statutory Response
	MKC as LLFA has reviewed the preliminary surface water drainage strategy submitted as part of the previous planning application and raised comments on the surface water drainage strategy. A copy of the letter containing the comments received from MKC as LLFA on the 15 th October 2019 is contained within Appendix A for reference.
	The following 3 comments were raised. We have provided a response to each in turn:-
	<u>1. Surface Water Pumping</u> According to the submitted drainage strategy, surface water will be restricted to 4 l/s/ha by using a surface water pump. Pumping of surface water is an unsustainable drainage method. Pumps present a significant residual risk if they are not maintained or fail during a storm event. Our preference is for gravity discharge to the surface water drainage system, mimicking the natural drainage of the site and reducing energy consumption as stated in paragraph 6.3.5 and 6.3.28 of the Flood and Water Supplementary Planning Document (SPD).
	We require that the applicant attempts to discharge as much surface water run-off via gravity as possible. This can be achieved through the use of larger areas of shallow attenuation or alternative SuDS approaches.
	If it can be demonstrated that a partial or completely pumped drainage system is the only viable option we would require that the residual risk of flooding due to the failure of the pumps be investigated. We would require that the flood level be determined under the following conditions:
	 The pumps were to fail; and The attenuation storage was 50% full; and A design storm occurred
	The floor levels of the affected properties must be raised above this level and all flooding must be safely stored onsite.

J:\38748 Caldecote Farm, Newport Pagnell\Word\Technical Notes\Surface Water\Supplementary Technical Note Response to LLFA\TN2028-001 Rev B Supplementary SW Drainage Technical Note FINAL.docx

Item	Subject
	Thorough liaison with MKC as LLFA, it has been agreed that the required Design Storm event to review is the 1 in 100 year event plus 20% climate change, and that any exceedance flow arising from this storm event can be managed on-site. This is recorded in an email dated 18 th December 2019 contained within Appendix A .
	It was also agreed that as the masterplan is not yet fixed, any detailed design required to establish floor levels based on the top flood water level would be conditioned, and that demonstrating the residual risk of flooding by means of volume of exceedance flows is acceptable at this stage of the development design.
	In response to Point 1, surface water run-off from the development is ultimately pumped off-site due to the level difference between the proposed development and the nearest viable discharge point at the existing unnamed watercourse (Internal Drainage Board (IDB) reference 18a) and not being able to achieve a gravity outfall.
	Therefore, a pumped drainage system is the only viable option to discharge surface water from the development – as fully detailed in Section 4 of TN2015/001 Rev B.
	Calculations have been undertaken in MicroDrainage Source Control to consider the residual risks in the context of a pumped solution, and identify the volume of exceedance flows which may need to be contained within the development during surface water flood conditions. For the purpose of these scenarios, a 12 hour storm duration for the 1 in 100 year plus 20% climate change rainfall event has been used as this requires the largest amount of storage volume.
	Scenario 1 - 1 in 100 year rainfall event plus 20% climate change
	A 12 hour storm duration for the 1 in 100 year plus 20% climate change rainfall event results in a storage volume of 9,284m³ . This could be accommodated within the 12,800m³ storage provision currently proposed within the site, as detailed on Drawing 38748/100/011, included within Appendix C of TN2015-001 Rev B.
	Scenario 2 - 1 in 100 year rainfall event plus 20% climate change with pumping station failure
	For the purpose of this scenario, 3 days is considered a reasonable time should the pumping station fail, allowing time for the pumping station to be brought back online, or temporary pumping arrangements to be made if required. In this scenario, a storage volume of 14,938m ³ is required, and an exceedance flow of 2,138m ³ (14,938m ³ - 12,800m ³) is generated. This exceedance flow could be accommodated within the 300mm freeboard provided in each of the proposed ponds and an additional layer to the proposed underground storage modules.
	Scenario 3 - 1 in 100 year rainfall event plus 20% climate change, occurring with attenuation at 50% capacity
	For the purpose of this scenario, assessment has been undertaken to determine the storage volume required in the 1 in 100 year rainfall event plus 20% climate change, occurring with attenuation storage already at 50% capacity from previous rainfall events. This has determined that the 12 hour storm duration for 1 in 100 year plus 20% climate change rainfall event requires the largest amount of storage volume. Therefore:-
	• At the beginning of the 1 in 100 year plus 20% climate change rainfall event a storage volume of 4,642m ³ is required (50% of the 1 in 100 year rainfall event plus 20% climate change). In parallel, after 12 hours the 1 in 100 year plus 20% climate change rainfall event will have contributed a further 11,508m ³ of surface water to the attenuation. This volume is based upon no pumping. This results in a total rainfall volume of 16,150m ³ .

J:\38748 Caldecote Farm, Newport Pagnell\Word\Technical Notes\Surface Water\Supplementary Technical Note Response to LLFA\TN2028-001 Rev B Supplementary SW Drainage Technical Note FINAL.docx

ltem	Subject
	 However, during the 12 hour storm, 2,376m³ of surface water will have been pumped from the attenuation facilities. This results in a storage volume of 13,774m³ being required and an exceedance flow of 974m³ (13,774m³ - 12,800m³) is generated. Beyond hour 12, the attenuation facilities revert back to normal conditions.
	This exceedance flow could be accommodated within the 300mm freeboard provided (2,617m ³) in each of the proposed ponds.
	Scenario 4 - 1 in 100 year rainfall event plus 20% climate change, occurring with attenuation at 50% capacity and pumping station failure
	For the purpose of this scenario, 3 days is considered a reasonable time should the pumping station fail, allowing time for the pumping station to be brought back online, or temporary pumping arrangements to be made if required. This results in a rainfall volume of 14,938m³ . An additional storage volume of 4,642m³ is required (50% of the 1 in 100 year rainfall event plus 20% climate change). This results in an overall storage volume of 19,040m³ , and an exceedance flow of 6,240m³ (19,040m³ - 12,800m³).
	This is the maximum volume of exceedance flow generated by the scenarios.
	Liaison has been undertaken with the LLFA which has confirmed that it can be demonstrated numerically that this exceedance flow can be accommodated / reduced further within the proposed surface water drainage system. The following options were agreed with the LLFA to reduce the exceedance flows:-
	 The 300mm freeboard provided in each of the proposed ponds will provide a total additional storage volume of 2,617m³;
	 An additional layer could be provided to the proposed underground storage modules in order to provide a total additional storage volume of 2,505m³;
	This results in a remaining volume of exceedance flow of 1,118m ³ above ground. It is proposed that the remaining exceedance volume is contained within the development within car parking areas and dock levellers, whilst maintaining access and egress to the buildings, before excess surface water is ultimately routed back towards the attenuation features. It should be noted that as part of the detailed design process, the volume of storage available within the pipes and manholes will also be considered and therefore it is expected that the exceedance volume will reduce.
	Further liaison is proposed with the LLFA / IDB during the detailed design process to discuss and agree additional options available to reduce the exceedance flows which could include additional storage volume being provided by increasing the side slopes of the attenuation ponds from 1 in 3 to 1 in 2.5 or providing vertical sides slopes. Noting that any pond with vertical sides would be appropriately fenced off to prohibit general access to these ponds and would need to be considered carefully in the overall detailed design process.
	A summary of storage volumes required in the scenarios are set out in Table 1 below:-

J:\38748 Caldecote Farm, Newport Pagnell\Word\Technical Notes\Surface Water\Supplementary Technical Note Response to LLFA\TN2028-001 Rev B Supplementary SW Drainage Technical Note FINAL.docx

	Subject					
Т	Table 1 – Summary of storage volumes required					
	Scenarios	Pump Rate	Storage Volume Required	Remaining Exceedance Flow		
	<u>Scenario 1</u> 1 in 100 year rainfall event plus 20% climate change	55I/s	9,284m³ (50% of the 1 in 100 year rainfall event plus 20% climate change rainfall event = 4,642m ³)	0m³		
	<u>Scenario 2</u> 1 in 100 year rainfall event plus 20% climate change with pumping station failure	0I/s	14,938m ³ assuming pumping station is off- line for up to 3 days	2,138m³		
	<u>Scenario 3</u> 1 in 100 year rainfall event plus 20% climate change, occurring with attenuation at 50% capacity	55I/s	4,642m ^{3 +} 11,508m ^{3 –} 2,376m ³ = 13,774m ³	974m ³		
	<u>Scenario 4</u> 1 in 100 year rainfall event plus 20% climate change, occurring with attenuation at 50% capacity and pumping station failure	0I/s	14,938m³ + 4,642m³ = 19,040m³ assuming pumping station is off- line for up to 3 days	6,240m ³		

J:\38748 Caldecote Farm, Newport Pagnell\Word\Technical Notes\Surface Water\Supplementary Technical Note Response to LLFA\TN2028-001 Rev B Supplementary SW Drainage Technical Note FINAL.docx

ltem	Subject
	<u>2. Surface Water Discharge Rates</u> 'It has been proposed to discharge surface water at a controlled rate of 4 l/s/ha for all events up to and including a 1 in 100 year event with a 40% allowance for climate change before discharging into 18a drain, which is under the ownership of Bedford Group of Drainage Boards. However, the greenfield run-off rate for the undeveloped site has not been provided.
	All new developments on greenfield land are required to discharge the run-off from impermeable areas at the same greenfield run-off rate, or less than, if locally agreed with an appropriate authority. The applicant has not demonstrated that the peak discharge rate for all events up to and including the 1% Annual Exceedance Probability (AEP) critical storm event, including an appropriate allowance for climate change, will not exceed that of the existing site. This may increase the flood risk on site and in surrounding areas.
	Although a principle agreement has been provided from the IDB, this agreement is dated from October 2017 and the capacity of the drain may have since changed. A new agreement from the IDB should therefore be sought.
	It has been reconfirmed with the IDB that the surface water from the development is still to be discharged at a rate of 4/I/s per impermeable hectare for all rainfall events. Correspondence from the IDB has been included within Appendix C.
	<u>3. Hydraulic Calculations Required</u> The surface water strategy must demonstrate that the storage volume required to attenuate surface water run-off from the critical 1% Annual Exceedance Probability (AEP) critical storm event, including an appropriate allowance for climate change, can be provided on site. This should be demonstrated by supporting hydraulic calculations. At present, this information has not been provided.
	As agreed with the LLFA, a design storm of 1 in 100 year plus 20% climate change has been used and calculations have been undertaken using Microdrainage Source Control to confirm the total storage attenuation volumes required.
	The storage volume required to attenuate surface water run-off from this event is 9,284m ³, the Microdrainage Source Control calculations have been included within Appendix B .
	The on-site attenuation features, as indicated on Drawing 38748/100/011 included within Appendix C of TN2015-001 Rev B, have been sized to accommodate a 1 in 100 year storm event plus an allowance of 40% for climate change. These features have a total indicative attenuation volume of 12,800m ³ which is subject to detailed design.
	Therefore, the surface water run-off arising from a 1 in 100 year storm event plus 20% climate change allowance has the capacity to be attenuated on-site, and within the preliminary surface water drainage strategy. As set out within Section 2 above, the residual risk of a pumped outfall has also been tested.

J:\38748 Caldecote Farm, Newport Pagnell\Word\Technical Notes\Surface Water\Supplementary Technical Note Response to LLFA\TN2028-001 Rev B Supplementary SW Drainage Technical Note FINAL.docx

ltem	Subject
8	Conclusion and Summary
	This Technical Note has been prepared in response to comments raised by MKC LLFA in response to the preliminary surface water drainage strategy prepared for an outline planning application for the proposed development Land at Caldecote Farm, Newport Pagnell (Planning ref. 19/02402/FUL). The response to these comments may be summarised as follows:-
	 The residual risk of flooding under the following scenarios have been considered:- The pumps were to fail; and The attenuation storage was 50% full; and A design storm occurred;
	The exceedance flow has been determined and mitigation measures detailed in order to reduce this volume. It is proposed that the remaining exceedance volume is to be contained within the development within car parking areas and dock levellers, whilst maintaining access and egress to the buildings, before excess surface water is ultimately routed back towards the attenuation features;
	 It has been reconfirmed with the IDB that surface water from the development is still to be discharged at a rate of 4/l/s per impermeable hectare;
	 Surface water run-off arising from a 1 in 100 year storm event plus 20% climate change allowance can be attenuated on-site;
	• It is anticipated that a standard planning condition will be applied to the planning consent, requiring the submission of the detailed design of surface water drainage infrastructure to the planning authority prior to commencement of development;

DOCUMENT ISSUE RECORD

Technical Note No	Rev	Date	Prepared	Checked	Reviewed (Discipline Lead)	Approved (Project Director)
38748/2028/TN001	Α	12/02/20	JB	WC	JSH	PJ
38748/2028/TN001	В	28/07/21	JB	SG	JSH	-

This report has been prepared by Stantec UK Limited ('Stantec') on behalf of its client to whom this report is addressed ('Client') in connection with the project described in this report and takes into account the Client's particular instructions and requirements. This report was prepared in accordance with the professional services appointment under which Stantec was appointed by its Client. This report is not intended for and should not be relied on by any third party (i.e. parties other than the Client). Stantec accepts no duty or responsibility (including in negligence) to any party other than the Client and disclaims all liability of any nature whatsoever to any such party in respect of this report. Stantec UK Limited 11 Prospect Court Courteenhall Road, Blisworth Northampton NN7 3DG

T: +44 (0)1604 878 300

J:\38748 Caldecote Farm, Newport Pagnell\Word\Technical Notes\Surface Water\Supplementary Technical Note Response to LLFA\TN2028-001 Rev B Supplementary SW Drainage Technical Note FINAL.docx

Appendix A

MKC LLFA statutory response to LPA Correspondence with MKC LLFA dated 18th December 2019

J:\38748 Caldecote Farm, Newport Pagnell\Word\Technical Notes\Surface Water\Supplementary Technical Note Response to LLFA\TN2028-001 Rev B Supplementary SW Drainage Technical Note FINAL.docx

Lead Local Flood Authority Milton Keynes Council

Reply toJessica PrestCall01223 703802E-mailJessica.Prest@Milton-Keynes.gov.uk

MILTON KEYNES COUNCIL LLFA statutory response to LPA

Attention: Elizabeth Verdegem

Date: 15/10/2019 Ref: 19/02402/FUL

Dear Elizabeth

Subject: 19/02402/FUL- Land At Caldecote Farm, East of The M1 Motorway, Adjacent To Willen Road

Full planning application for the erection of two storage and distribution units (use class B8), with associated access, car parking, servicing, landscaping, earthworks, on and off-site drainage and off-site highway works.

Thank you for your consultation which we received on the 25th September 2019.

We have reviewed the following documents:

• Surface Water Drainage, BWB Consulting Ltd, NPG-BWB-EWE-XX-RP-YE-0001_FRA. Dated: 27/03/2019.

At present we **object** to the grant of planning permission for the following reasons:

1. Surface water pumping

According to the submitted drainage strategy, surface water will be restricted to 4 l/s/ha by using a surface water pump. Pumping of surface water is an unsustainable drainage method. Pumps present a significant residual risk if they are not maintained or fail during a storm event. Our preference is for gravity discharge to the surface water drainage system, mimicking the natural drainage of the site and reducing energy consumption as stated in paragraph 6.3.5 and 6.3.28 of the Flood and Water Supplementary Planning Document (SPD).

We require that the applicant attempts to discharge as much surface water runoff via gravity as possible. This can be achieved through the use of larger areas of shallow attenuation or alternative SuDS approaches.

If it can be demonstrated that a partial or completely pumped drainage system is the only viable option we would require that the residual risk of flooding due to the failure of the pumps be investigated. We would require that the flood level be determined under the following conditions:

- The pumps were to fail; and
- The attenuation storage was 50% full; and
- A design storm occurred

The floor levels of the affected properties must be raised above this level and all flooding must be safely stored onsite.

2. Surface water discharge rates

It has been proposed to discharge surface water at a controlled rate of 4 l/s/ha for all events up to and including a 1 in 100 year event with a 40% allowance for climate change before discharging into 18a drain, which is under the ownership of Bedford Group of Drainage Boards. However, the greenfield runoff rate for the undeveloped site has not been provided.

All new developments on greenfield land are required to discharge the runoff from impermeable areas at the same greenfield runoff rate, or less than, if locally agreed with an appropriate authority. The applicant has not demonstrated that the peak discharge rate for all events up to and including the 1% Annual Exceedance Probability (AEP) critical storm event, including an appropriate allowance for climate change, will not exceed that of the existing site. This may increase the flood risk on site and in surrounding areas.

Although a principle agreement has been provided from the IDB, this agreement is dated from October 2017 and the capacity of the drain may have since changed. A new agreement from the IDB should therefore be sought.

3. Hydraulic calculations required

The surface water strategy must demonstrate that the storage volume required to attenuate surface water run-off from the critical 1% Annual Exceedance Probability (AEP) critical storm event, including an appropriate allowance for climate change, can be provided on site. This should be demonstrated by supporting hydraulic calculations. At present, this information has not been provided.

Informatives

IDB Consent

This site falls within the Bedford Group of Drainage Boards. Under the Land Drainage Act 1991, any person carrying out works on an ordinary watercourse in an IDB area requires Land Drainage Consent from the IDB prior to any works taking place. This is applicable to both permanent and temporary works. Note: In some IDB districts, Byelaw consent may also be required.

Pollution Control

Surface water and groundwater bodies are highly vulnerable to pollution and the impact of construction activities. It is essential that the risk of pollution (particularly during the

construction phase) is considered and mitigated appropriately. It is important to remember that flow within the watercourse is likely to vary by season and it could be dry at certain times throughout the year. Dry watercourses should not be overlooked as these watercourses may flow or even flood following heavy rainfall.

Balzer, Jordan

Subject: FW: 38748 Land at Caldecote Farm - Planning Ref: 19/02402/FUL

 From: Prest, Jessica [mailto:Jessica.Prest@milton-keynes.gov.uk]

 Sent: 18 December 2019 10:59

 To: Griffiths, Sian <s</td>

 Cc: Horne, James

 James, Paul (Northampton)

Subject: RE: 38748 Land at Caldecote Farm - Planning Ref: 19/02402/FUL

Good morning Sian,

Thank you for providing clarification on the highlighted sentence, I had misunderstood your previous email.

Yes, I can confirm that is correct and we both seem to be on the same page based on our discussion over the phone yesterday.

Kind regards, Jessica

Jessica Prest Flood and Water Management Team (Please note I work part-time for Milton Keynes)

Phone: 01223 703802 Email: jessica.prest@Milton-Keynes.gov.uk

From: Griffiths, Sian [main and a second s

Morning Jessica

Thank you for getting back to me yesterday.

With regard to the sentence I have highlighted in your email below, we have modelled the storage on site to store up to and including the 1 in 100 year event plus 20% additional allowance for climate change.

As I understood from our conversation yesterday, the exceedance flows created when running the model using the pump failure conditions (attenuation 50% full with a 1 in 100 year event plus 20% for climate change) do not have to be stored within the attenuation provided, we just need to show that it can be contained safely within the development site?

Thank you.

Sian

Kind regards,

Sian Griffiths EngTech MICE Senior Engineer

CONTRACTOR AND ADDRESS AND ADDRESS ADDR	

PBA has joined the Stantec family, find out more at stantec.com/uk

From: Prest, Jessica [mailto:Jessica.Prest@milton-keynes.gov.uk]
Sent: 17 December 2019 17:07
To: Griffiths, Sian <s
Subject: RE: 38748 Land at Caldecote Farm - Planning Ref: 19/02402/FUL</pre>

Dear Sian,

Many thanks for your email. Please accept my apologies, as I may not have been clear on the phone, we do require the pump failure modelling to be performed using the design flood event (i.e. the 1 in 100 year event plus 20% climate change). However, there is by no means any requirement to ensure that all flooding occurring during failure is attenuated within the onsite storage, we just need to see demonstration that if this event does occur, the flood water can be safely managed on site (with a supporting exceedance flow plan highlighting anticipated flood depths, volumes and distribution associated with this). Although, if you are saying that system flooding has been modelled to occur in a 1 in 100 year event plus climate change (even without pump failure), it may be that the amount of attenuation on site will need to be increased.

Unfortunately, we are unable to accept a 1 in 10 year follow on event as we need to see pump failure modelling for the very worst case scenario and we need to remain consistent in our requirements.

Please do not hesitate to get in touch if you have any further questions.

Kind regards, Jessica

Jessica Prest Flood and Water Management Team (Please note I work part-time for Milton Keynes)

Phone: 01223 703802 Email: jessica.prest@Milton-Keynes.gov.uk

From: Griffiths, Sian [mailto:s
Sent: 17 December 2019 15:03
To: Prest, Jessica
Cc: Balzer, Jordan; Horne, James; James, Paul (Northampton)
Subject: [EXT] 38748 Land at Caldecote Farm - Planning Ref: 19/02402/FUL

Dear Jessica

Further to our telephone conversation earlier today regarding your response to the surface water drainage strategy submitted in support of the application made for planning for the above development.

Please can you confirm that When determining the flood level if the pumps were to fail and the attenuation storage was 50% full, it is acceptable to use a 1 in 10 year follow on event as the design storm to show where flooding (if any) will be contained and how it will managed safely.

Calculations will be provided for the storage provision, demonstrating that the 1 in 100 year event plus 20% climate change can be contained safely on site.

Thank you.

Sian

Kind regards,

Sian Griffiths EngTech MICE Senior Engineer

PBA has joined the Stantec family, find out more at stantec.com/uk

Visit the Milton Keynes Council web site at https://www.milton-keynes.gov.uk

Any personal data will be processed in line with the Data Protection legislation, further details at https://www.milton-keynes.gov.uk/privacy

Please consider the environment and don't print this email unless you really need to

**** This email and any attachments hereto are strictly confidential and intended solely for the addressee. It may contain information which is privileged. If you are not the intended addressee, you must not disclose, forward, copy or take any action in reliance of this email or attachments. If you have received this email in error, please delete it and notify us as soon as possible.

The anti-virus software used by Milton Keynes Council is updated regularly in an effort to minimise the possibility of viruses infecting our systems. However, you should be aware that there is no absolute guarantee that any files attached to this email are virus free.****

Visit the Milton Keynes Council web site at https://www.milton-keynes.gov.uk

Any personal data will be processed in line with the Data Protection legislation, further details at https://www.milton-keynes.gov.uk/privacy

Please consider the environment and don't print this email unless you really need to

**** This email and any attachments hereto are strictly confidential and intended solely for the addressee. It may contain information which is privileged. If you are not the intended addressee, you must not disclose, forward, copy or take any action in reliance of this email or attachments. If you have received this email in error, please delete it and notify us as soon as possible.

The anti-virus software used by Milton Keynes Council is updated regularly in an effort to minimise the possibility of viruses infecting our systems. However, you should be aware that there is no absolute guarantee that any files attached to this email are virus free.****

Appendix B

Microdrainage Source Control Surface Water Attenuation Calculations

J:\38748 Caldecote Farm, Newport Pagnell\Word\Technical Notes\Surface Water\Supplementary Technical Note Response to LLFA\TN2028-001 Rev B Supplementary SW Drainage Technical Note FINAL.docx

Peter Brett Associates						Page 1
Caversham Bridge House	Calc	lecote	Farm			
Waterman Place	Atte	enuatio	n			L
Reading RG1 8DN	100y	vr 20%	CC			Micco
Date 03/01/2020 09:49	Desi	gned b	у ЈВ			
File 191217 ONE POND.SRCX	Chec	ked by	SG			Drainage
Micro Drainage	Sour	ce Con	trol	2017.1	.2	
Summary of Results	for 10)0 year	Retu	rn Pei	riod (+20%)	
Storm	Max	Max	Max	Max	Status	
Event	Level (m)	Depth Co	ontrol	Volume (m ³)		
	(111)	(111)	(1/3)	()		
60 min Summer	3.687	3.687	55.0	6446.1	O K	
120 min Summer	4.023	4.023	55.0	7356.8	O K	
180 min Summer	4.210	4.210	55.0	7892.4	OK	
240 min Summer	4.333 / /06	4.333 1 196	55.U	020/.6	O K	
Alo min Summer	4.400 4 570	4.400 4 572	JJ.U 55 0	012U.4	0 K	
400 min Summer	4 619	J/2 4 619	55 O	0200.2 9135 3	0 K 0 V	
720 min Summer	4.642	4.642	55 0	9207 7	0 K	
960 min Summer	4.555	4.555	55.0	8934.9	O K	
1440 min Summer	4.320	4.320	55.0	8217.9	O K	
2160 min Summer	4.039	4.039	55.0	7402.0	ΟK	
2880 min Summer	3.817	3.817	55.0	6791.3	O K	
4320 min Summer	3.443	3.443	55.0	5820.6	O K	
5760 min Summer	3.084	3.084	55.0	4958.9	O K	
7200 min Summer	2.733	2.733	55.0	4180.4	O K	
8640 min Summer	2.387	2.387	55.0	3473.8	O K	
10080 min Summer	2.054	2.054	55.0	2845.7	OK	
120 min Winter	1 027	3.009 1 027	55.0	7360 1	OK	
180 min Winter	4.027	4.027	55 0	7911 4	0 K	
240 min Winter	4.342	4.342	55.0	8282.3	0 K	
				_		
Storm	Rain	Flooded	d Disch	narge T	ime-Peak	
Event	(mm/nr)	(m ³)	(m	ume 3)	(mins)	
		()	(
60 min Summer	56.904	0.0	0 66	555.0	70	
120 min Summer	33.148	0.0) 77	753.5	130	
180 min Summer	24.165	0.0) 84	178.3	188	
240 min Summer	19.310	0.0) 90)25.1	248	
360 min Summer	11 240	0.0	ע 94 עס ר	120.2	368	
480 min Summer	11.248 9 150	0.0	ע איני איני. אס ר	±J∀.∠ 125 7	480 606	
720 min Summer	8 200	0.0) a/	111 5	724	
960 min Summer	6.407	0.0) 93	375.9	962	
1440 min Summer	4.525	0.0) 92	261.4	1288	
2160 min Summer	3.196	0.0) 134	157.1	1624	
2880 min Summer	2.497	0.0	0 140	019.9	2016	
4320 min Summer	1.774	0.0) 149	937.7	2812	
5760 min Summer	1.392	0.0	156	525.2	3624	
7200 min Summer	1.153	0.0	J 161	180.1	4392	
8640 min Summer	0.989	0.0	J 156	048./	5112	
60 min Winter	56 901	0.0) 1/L	555 N	0000 70	
120 min Winter	33.148	0.0) 77	753.5	12.8	
180 min Winter	24.165	0.0) 84	178.3	186	
240 min Winter	19.310	0.0) 90	024.5	244	
©198	2-2017	XP So	lutio	ns		

Peter Brett Associates						Page 2
Caversham Bridge House	Cal	decot	e Farm			
Waterman Place	Att	enuat	ion			4
Reading RG1 8DN	100	yr 20	% CC			Micco
Date 03/01/2020 09:49	Des	igned	by JB			
File 191217 ONE POND.SRCX	Che	cked 1	by SG			Drainage
Micro Drainage	Sou	rce C	ontrol	2017.1	.2	
					-	
Summary of Results	for 1	00 ye	ar Retu	ırn Per	iod (+20%)	
						9284.2m3 of storage
Storm	Max	Max	Max	Max	Status	volume required for a
Event	Level	Depth	Control	Volume	,	1 in 100 year rainfall
	(m)	(m)	(1/s)	(m³)	/	event plus 20% climate
360 min Winter	4.498	4.498	55.0	8757.6	ОК	change allowance. This
480 min Winter	4.587	4.587	55.0	9035.3	ок	includes the pumps
600 min Winter	4.639	4.639	55.0	9197.7	ок	working at 55.04l/s.
720 min Winter	4.666	4.666	55.0	9284.2	ОК	
960 min Winter	4.589	4.589	55.0 55.0	9041.3	OK	
2160 min Winter	4.028	4.028	55.0	7371.3	0 K	
2880 min Winter	3.747	3.747	55.0	6603.3	ОК	
4320 min Winter 3	3.206	3.206	55.0	5244.9	O K	
5760 min Winter	2.655	2.655	55.0	4017.0	O K	
7200 min Winter 2	2.103	2.103	55.0	2934.8	ОК	
10080 min Winter	1.049	1.049	55.0	∠007.8 1244.4	OK	
10000 milli WillCOL	~ . ~		00.0		0 10	1

S	torm	Rain	Flooded	Discharge	Time-Peak
E	vent	(mm/hr)	Volume	Volume	(mins)
			(m³)	(m³)	
360 m	nin Winter	14 076	0 0	9431 4	360
480 r	nin Winter	11.248	0.0	9411.1	478
600 r	min Winter	9.452	0.0	9390.7	594
720 r	nin Winter	8.200	0.0	9369.8	708
960 r	nin Winter	6.407	0.0	9323.2	934
1440 r	min Winter	4.525	0.0	9212.0	1360
2160 r	min Winter	3.196	0.0	13457.1	1688
2880 r	min Winter	2.497	0.0	14019.9	2136
4320 r	min Winter	1.774	0.0	14937.8	2996
5760 r	min Winter	1.392	0.0	15625.2	3816
7200 r	nin Winter	1.153	0.0	16180.6	4608
8640 r	nin Winter	0.989	0.0	16648.7	5280
10080 r	min Winter	0.868	0.0	17054.9	5952

		Page 3
Caversham Bridge House	Caldecote Farm	
Waterman Place	Attenuation	4
Reading RG1 8DN	100 vr 20% CC	1 mm
$D_{ate} = 0.3/01/2020 - 0.9.49$	Designed by JB	— Micro
File 191217 ONE DOND SPCY	Checked by SG	Drainage
Miero Drainago	Course Control 2017 1 2	
	Source control 2017.1.2	
Ra	infall Details	
Rainfall Mode	el FEH	
Return Period (years	s) 100	
FEH Rainfall Versio	on 1999	
Site Locatio	on GB 48/500 242/50 SP 8/500 42/50 -0.026	
D1 (1kr	n) 0.340	
D2 (1kr	m) 0.262	
D3 (1kr	n) 0.276	
E (1Kr F (1kr	n) 0.310 D 2.433	
Summer Storr	ns Yes	
Winter Storr	ns Yes	
Cv (Summer	r) 0.850	
Shortest Storm (mins	s) 60	
Longest Storm (mins	s) 10080	
Climate Change	8 +20	
Ti	no Amon Diagnom	
<u></u>	ne Area Diagram	
Tota	ul Area (ha) 13.760	
Time (mins) Area Ti From: To: (ha) Fr	ime (mins) Area Time (mins) Area om: To: (ha) From: To: (ha)	
0 4 3.440	4 8 6.880 8 12 3.440	
01982-	-2017 XP Solutions	

Peter Brett Associates		Page 4
Caversham Bridge House	Caldecote Farm	
Waterman Place	Attenuation	L.
Reading RG1 8DN	100yr 20% CC	Micco
Date 03/01/2020 09:49	Designed by JB	
File 191217 ONE POND.SRCX	Checked by SG	Diamaye
Micro Drainage	Source Control 2017.1.2	

Model Details

Storage is Online Cover Level (m) 10.000

Tank or Pond Structure

Invert Level (m) 0.000

Depth	ı (m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)
(0.000	1	0.000	1	.400	15	526.2	2	.800	21	63.3	4.	.200	29	911.2
(.200	1	068.4	1	.600	16	510.5	3	.000	22	263.4	4.	400	30)27.1
(.400	1	139.0	1	.800	16	596.9	3	.200	23	865.7	4.	.600	31	45.3
(.600	1:	212.0	2	.000	17	785.7	3	.400	24	70.3	4.	. 800	32	265.7
(.800	12	287.1	2.	.200	18	376.7	3	.600	25	577.1	5.	.000	33	388.4
-	.000	1	364.6	2	.400	19	970.0	3	.800	26	586.2				
-	.200	1	444.3	2	.600	20	065.5	4	.000	27	97.6				

Pump Outflow Control

Invert Level (m) 0.000

Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow $(1/s)$
0.200	55.0400	1.800	55.0400	3.400	55.0400	5.000	55.0400
0.400	55.0400	2.000	55.0400	3.600	55.0400	5.200	55.0400
0.600	55.0400	2.200	55.0400	3.800	55.0400	5.400	55.0400
0.800	55.0400	2.400	55.0400	4.000	55.0400	5.600	55.0400
1.000	55.0400	2.600	55.0400	4.200	55.0400	5.800	55.0400
1.200	55.0400	2.800	55.0400	4.400	55.0400	6.000	55.0400
1.400	55.0400	3.000	55.0400	4.600	55.0400		
1.600	55.0400	3.200	55.0400	4.800	55.0400		

Peter Brett Associates				Page 1
Caversham Bridge House	Caldeco	te Farm		5
Waterman Place	Attenua	tion		1 L
Reading RG1 8DN	100yr 2	0%CC PUMP FA	IL	Micro
Date 03/01/2020	Designe	d by JB		Drainage
File 191217 ONE POND NO PUMP	. Checked	by SG		Diamay
Micro Drainage	Source	Control 2017	.1.2	
Summary of Results	for 100 y	ear Return H	Period (+20%)	-
Storm	May May	Max May	e Status	
Event	Level Depth	Control Volu	me	
	(m) (m)	(1/s) (m ³)	
60 min Summer	2 766 2 766	0 0 6651		
120 min Summer	4.162 4.162	0.0 665	4.0 OK	
180 min Summer	4.407 4.407	0.0 8478	3.8 ОК	
240 min Summer	4.587 4.587	0.0 9033	3.8 OK	
360 min Summer	4.849 4.849	0.0 9878	3.3 ОК	
480 min Summer	5.042 5.042	0.0 1052	1.9 OK	
600 min Summer	5.199 5.199	0.0 1105	D.5 OK	
/20 min Summer	5.333 5.333 5.475 5.475			
260 MIN Summer 1440 min Summer	5.685 5 685		2.6 OK	
2160 min Summer	5.908 5.908	0.0 1345	7.6 OK	
2880 min Summer	6.074 6.074	0.0 14020	0.4 OK	
4320 min Summer	6.345 6.345	0.0 1493	3.2 OK	
5760 min Summer	6.548 6.548	0.0 1562	5.7 ОК	
7200 min Summer	6.711 6.711	0.0 16180	0.6 ОК	
8640 min Summer	6.850 6.850	0.0 16648	3.7 ОК	
10080 min Summer	6.969 6.969	0.0 1705	1.9 OK	
60 min Winter	3.766 3.766	0.0 665	5.5 OK	
120 min Winter	4.162 4.162			
240 min Winter	4.587 4.587	0.0 903	3.8 OK	
a 1	- · -1			
Storm	Rain Flo	oded Discharge	Time-Peak	
Event	(IIIII/III) VOI	(m^3) (m^3)	(mins)	
	(. , (,		
60 min Summer	56.904	0.0 0.0	72	
120 min Summer	33.148	0.0	132	
180 min Summer	∠4.165 19 310	0.0 0.0	192	
360 min Summer	14.076	0.0 0.0	372	
480 min Summer	11.248	0.0 0.0	492	
600 min Summer	9.452	0.0 0.0	612	
720 min Summer	8.200	0.0 0.0	732	
960 min Summer	6.407	0.0 0.0	972	
1440 min Summer	4.525	0.0 0.0	1452	
2160 min Summer	3.196	0.0 0.0	2172	
2880 min Summer	2.497	0.0 0.0	2892	
4320 min Summer	1.774	U.U 0.0	4332	
5/60 min Summer	1.392 1.150	0.0 0.0	5//6	
8640 min Summer	T.T22		1210	
10080 min Summer	0.868	0.0 0.0	10096	
60 min Winter	56.904	0.0 0.0	72	
120 min Winter	33.148	0.0 0.0	132	
180 min Winter	24.165	0.0 0.0	192	
240 min Winter	19.310	0.0 0.0	252	
<u>ଲ</u> ୀ ପ୍ର	2-2017 YD	Solutions		
G1 70		SOTUCIONS		

	Peter Bret	t Associat	es						Page 2
	Caversham	Bridge Hou	se	Cal	decote	Farm			
	Waterman P	Place		Att	enuatio	n			4
	Reading F	RG1 8DN		100	vr 20%C	C PIIN	MP FATI.		- Com
	Date 03/01	/2020		Des	igned b	v JB			
	File 19121	7 ONE POND	NO PIIMP	Che	cked by	SG			Drainage
	Micro Drai	nage		Sou	rce Con	trol	2017 1	2	At the beginning of the 1
		inage				CIOI	2017.1	• 2	in 100 year rainfall event
		Summary	of Results	for 1	00 vear	Ret	urn Per	iod (+20%) plus 20% climate change
		<u>_</u>			4				allowance (Hour 0), a
			Storm	Max	Max	Max	Max	Status	storage volume of
			Event	Level	Depth Co	ntrol	Volume		4,642m3 is required (50%
				(m)	(m) (1/s)	(m³)		of the 1 in 100 year
		360) min Winter	4.849	4.849	0.0	9878.3	O K	rainfall event plus 20%
		480) min Winter	5.042	5.042	0.0	10524.9	O K	climate change
11 500 2		600) min Winter	5.199	5.199	0.0	11055.5	OK	allowance).
11,508m3 C	of surface	960) min Winter	5.475	5.475	0.0	11990.0	O K	
the attenue	ibuled to	1440) min Winter	5.685	5.685	0.0	12702.6	O K	
ofter 12 hou	ur 1 in 100	2160) min Winter	5.908	5.908	0.0	13457.6	O K	
vear rainfall		2880) min Winter	6.0/4	6.0/4 6.345	0.0	14020.4	OK	
20% climate	e change	5760) min Winter	6.548	6.548	0.0	15625.7	ок	
allowance	e change	7200) min Winter	6.711	6.711	0.0	16180.6	O K	
anowance.		8640) min Winter	6.850	6.850	0.0	16648.7	ОК	Storage volume of
		10080) min winter	0.909	0.909	0.0	1/054.9	ΟK	14938.2m3 required for
									1 in 100 year rainfall
									event plus 20% climate
			Storm	Rain	Flooded	Disc	harge Ti	ime-Peak	change allowance with
			Event	(mm/hr)	Volume	Vo	lume	(mins)	pumping station failure
					(m³)	(1	m³)		ior 5 days.
		360	min Winter	14.076	0.0		0.0	372	
		480	min Winter	11.248	0.0		0.0	492	
		480 600 720	min Winter min Winter min Winter	11.248 9.452 8.200			0.0 0.0	492 612 732	
		480 600 720 960	min Winter min Winter min Winter min Winter	11.248 9.452 8.200 6.407	8 0.0 2 0.0 0 0.0		0.0 0.0 0.0 0.0	492 612 732 972	
		480 600 720 960 1440	min Winter min Winter min Winter min Winter min Winter	11.248 9.452 8.200 6.407 4.525	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0	492 612 732 972 1452	
		480 600 720 960 1440 2160	min Winter min Winter min Winter min Winter min Winter min Winter	11.248 9.452 8.200 6.407 4.525 3.196	8 0.0 2 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0		0.0 0.0 0.0 0.0 0.0	492 612 732 972 1452 2172	
		480 600 720 960 1440 2160 2880 4320	min Winter min Winter min Winter min Winter min Winter min Winter min Winter	11.248 9.452 8.200 6.407 4.525 3.196 2.497			0.0 0.0 0.0 0.0 0.0 0.0 0.0	492 612 732 972 1452 2172 2892 4332	
		480 600 720 960 1440 2160 2880 4320 5760	min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter	11.248 9.452 8.200 6.407 4.525 3.196 2.497 1.774 1.392	8 0.0 2 0.0 0 0.0 0 0.0 5 0.0 6 0.0 7 0.0 6 0.0 7 0.0 6 0.0 7 0.0 6 0.0 7 0.0 10 0.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	492 612 732 972 1452 2172 2892 4332 5776	
		480 600 720 960 1440 2160 2880 4320 5760 7200	min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter	11.248 9.452 8.200 6.407 4.525 3.196 2.497 1.774 1.392 1.153	B 0.0 C 0.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	492 612 732 972 1452 2172 2892 4332 5776 7216	
		480 600 720 960 1440 2160 2880 4320 5760 7200 8640	min Winter min Winter	11.248 9.452 8.200 6.407 4.525 3.196 2.497 1.774 1.392 1.153 0.985			0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	492 612 732 972 1452 2172 2892 4332 5776 7216 8656	
		480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	min Winter min Winter	11.248 9.452 8.200 6.407 4.525 3.196 2.497 1.774 1.392 1.153 0.985 0.868			0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	492 612 732 972 1452 2172 2892 4332 5776 7216 8656 10096	
		480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	min Winter min Winter	11.248 9.452 8.200 6.407 4.525 3.196 2.497 1.774 1.392 1.153 0.989 0.868			0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	492 612 732 972 1452 2172 2892 4332 5776 7216 8656 10096	
		480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	min Winter min Winter	11.248 9.452 8.200 6.407 4.525 3.196 2.497 1.774 1.392 1.153 0.989 0.868			0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	492 612 732 972 1452 2172 2892 4332 5776 7216 8656 10096	
		480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter	11.248 9.452 8.200 6.407 4.525 3.196 2.497 1.774 1.392 1.153 0.985 0.868			0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	492 612 732 972 1452 2172 2892 4332 5776 7216 8656 10096	
		480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	min Winter min Winter	11.248 9.452 8.200 6.407 4.525 3.196 2.497 1.774 1.392 1.153 0.989 0.868				492 612 732 972 1452 2172 2892 4332 5776 7216 8656 10096	
		480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	min Winter min Winter	11.248 9.452 8.200 6.407 4.525 3.196 2.497 1.774 1.392 1.153 0.989 0.868				492 612 732 972 1452 2172 2892 4332 5776 7216 8656 10096	
		480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	min Winter min Winter	11.248 9.452 8.200 6.407 4.525 3.196 2.497 1.774 1.392 1.153 0.985 0.868				492 612 732 972 1452 2172 2892 4332 5776 7216 8656 10096	
		480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	min Winter min Winter	11.248 9.452 8.200 6.407 4.525 3.196 2.497 1.774 1.392 1.153 0.989 0.868				492 612 732 972 1452 2172 2892 4332 5776 7216 8656 10096	
		480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	min Winter min Winter	11.248 9.452 8.200 6.407 4.525 3.196 2.497 1.774 1.392 1.153 0.985 0.868				492 612 732 972 1452 2172 2892 4332 5776 7216 8656 10096	
		480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	min Winter min Winter	11.248 9.452 8.200 6.407 4.525 3.196 2.497 1.774 1.392 1.153 0.985 0.868				492 612 732 972 1452 2172 2892 4332 5776 7216 8656 10096	
		480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	min Winter min Winter	11.248 9.452 8.200 6.407 4.525 3.196 2.497 1.774 1.392 1.153 0.989 0.868				492 612 732 972 1452 2172 2892 4332 5776 7216 8656 10096	
		480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	min Winter min Winter	11.248 9.452 8.200 6.407 4.525 3.196 2.497 1.774 1.392 1.153 0.985 0.868				492 612 732 972 1452 2172 2892 4332 5776 7216 8656 10096	
		480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	min Winter min Winter	11.248 9.452 8.200 6.407 4.525 3.196 2.497 1.774 1.392 1.153 0.989 0.868				492 612 732 972 1452 2172 2892 4332 5776 7216 8656 10096	
		480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	min Winter min Winter	11.248 9.452 8.200 6.407 4.525 3.196 2.497 1.774 1.392 1.153 0.985 0.868				492 612 732 972 1452 2172 2892 4332 5776 7216 8656 10096	

Peter Brett Associates		Page 3			
Caversham Bridge House	Caldecote Farm				
Waterman Place	Attenuation	4			
Reading RG1 8DN 100vr 20%CC PIIMP FATL					
$D_{ate} = 0.3/01/2020$	MICLO				
File 191217 ONE POND NO PLIMP	Checked by SG	Drainage			
Micro Drainage	Source Control 2017 1 2				
Ra	infall Details				
Rainfall Mode	el FEH				
Return Period (years	5) 100				
FEH Rainfall Versio	on 1999				
Site Locatio	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
D1 (1kr	n) 0.340				
D2 (1km	n) 0.262				
D3 (1kr	0.276				
E (1K) F (1kr	n) 2.433				
Summer Storn	ns Yes				
Winter Storn	ns Yes				
Cv (Summer Cv (Winter	c) 0.850 c) 0.850				
Shortest Storm (mins	s) 60				
Longest Storm (mins	5) 10080				
Climate Change	* +20				
Tin	ne Area Diagram				
Tota	l Area (ha) 13.760				
Time (mins) Area Ti From: To: (ha) Fr	me (mins) Area Time (mins) Area om: To: (ha) From: To: (ha)				
0 4 3.440	4 8 6.880 8 12 3.440				
01000	2017 VD 0.1				

Peter Brett Associates				
Caversham Bridge House	Caldecote Farm			
Waterman Place	Attenuation	L.		
Reading RG1 8DN	100yr 20%CC PUMP FAIL	Micco		
Date 03/01/2020	Designed by JB			
File 191217 ONE POND NO PUMP	Checked by SG	Diamaye		
Micro Drainage	Source Control 2017.1.2			

Model Details

Storage is Online Cover Level (m) 10.000

Tank or Pond Structure

Invert Level (m) 0.000

Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)
0	.000	1(0.00	1	.400	15	526.2	2 .	.800	21	63.3	4.	200	29	911.2
0	.200	10	068.4	1	.600	16	510.5	3	.000	22	63.4	4.	400	30	27.1
0	.400	11	139.0	1	.800	16	596.9	3	.200	23	65.7	4.	600	31	45.3
0	.600	12	212.0	2	.000	17	785.7	3	.400	24	70.3	4.	800	32	265.7
0	.800	12	287.1	2	.200	18	376.7	3	.600	25	77.1	5.	000	33	388.4
1	.000	13	364.6	2	.400	19	970.0	3	.800	26	86.2				
1	.200	14	444.3	2	.600	20	065.5	4	.000	27	97.6				

Pump Outflow Control

Invert Level (m) 0.000

Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow $(1/s)$
0.200	0.0000	1.800	0.0000	3.400	0.0000	5.000	0.0000
0.400	0.0000	2.000	0.0000	3.600	0.0000	5.200	0.0000
0.600	0.0000	2.200	0.0000	3.800	0.0000	5.400	0.0000
0.800	0.0000	2.400	0.0000	4.000	0.0000	5.600	0.0000
1.000	0.0000	2.600	0.0000	4.200	0.0000	5.800	0.0000
1.200	0.0000	2.800	0.0000	4.400	0.0000	6.000	0.0000
1.400	0.0000	3.000	0.0000	4.600	0.0000		
1.600	0.0000	3.200	0.0000	4.800	0.0000		

Appendix C

IDB Correspondence Dated 22nd November 2019

J:\38748 Caldecote Farm, Newport Pagnell\Word\Technical Notes\Surface Water\Supplementary Technical Note Response to LLFA\TN2028-001 Rev B Supplementary SW Drainage Technical Note FINAL.docx

From:	Trevor Skelding
To:	Horne, James
Subject:	RE: Land at Caldecote Farm, Newport Pagnell
Date:	22 November 2019 15:45:47
Attachments:	image001.png
	image002.png
	image003 ppg

James

Any surface water discharge into the land drainage system within the Board's district at this location shall be restricted to a <u>maximum</u> discharge rate of 4 l/s per contributing impermeable hectare. If the LA require a lesser rate then this would be accepted. The rate the Board quotes is the maximum acceptable. Please note that the downstream receiving watercourse must be the existing one that the land naturally drains to.

The discharge and any development within 9m of a watercourse within the Board's district will require its prior agreement and consent. The presumption is that the development is set 9m back from any watercourse.

Regards

Trevor Skelding MSc IEng MICE Principal Engineer

Bedford Group of Drainage Boards | Vale House | Broadmead Road | Stewartby | Bedfordshire | MK43 9ND

www.idbs.org.uk

The Bedford Group is a consortium of the Bedfordshire and River Ivel Internal Drainage Board, the Buckingham and River Ouzel Internal Drainage Board and the Alconbury and Ellington Internal Drainage Board.

Information in this message and any associated files attached it, may be **confidential** and may be legally privileged. If you have received this email in error please notify the author immediately by return email or telephone and then delete this message and any associated attachments and do not copy it to anyone else. Any correspondence with the sender will be subject to automatic monitoring for inappropriate content.

Your information will be processed in accordance with the law, in particular current Data Protection Legislation. If you have contacted the Board/s for a service then your personal data will be processed in order to provide that service or answer your enquiry. For full details of our Privacy Policy and your rights please go to our website at <u>www.idbs.org.uk</u>.

The information that you provide will only be used for the purpose of the Board/s unless there is a legal authority to do otherwise. The contents of emails may have to be disclosed to a request under the Data Protection Act, the Freedom of Information Act 2000 or the Environmental Information Regulations 2004. The Bedford Group of Drainage Board address may also be accessed by someone other than the sender or recipient, for business purposes.

The statements in this message are made by the individual who sent them and do not necessarily represent the views or opinions of The Bedford Group of Drainage Boards.

From: Horne, James <	
Sent: 22 November 2019 15:16	
To: Trevor Skelding <t< td=""><td>></td></t<>	>
Cc: James, Paul (Northampton)	m>; Griffiths, Sian
<	m>

Subject: Land at Caldecote Farm, Newport Pagnell

Dear Trevor,

Hope you are well.

With regards to the above scheme, we are preparing a response to MKC's LLFA (attached) comments on the planning application. In order to respond to Point 2, please can you confirm the content of the IDB's email to BWB dated 24th October 2017 (also attached) remains the same or has it changed.

Kind regards,

James	Horne Engle	ech MICE	
Northamp	oton		
		?	

PBA has joined the Stantec family, find out more at peterbrett.com.

?