Manhole Reference	Liquid Type	Cover Level	invert Level	Depth to Invert
2501	F	68.6	60.41	8.19
2502	F	66.81	61.01	5.8
2701	F	62.71	58.88	3.83
2702	F	63.33	59.24	4.09
2801	F	62.54	58.65	3.89
3501	F	65.78	60.02	5.76
	F	64.08		
3601			59.49	4.59
4501	F	-	-	-
4502	F	-	-	-
4503	F	-	-	-
4504	F	-	-	-
4800	F	-	95.37	-
4901	F	64.41	59.19	5.22
5500	F	-	-	-
5801	F	65.64	59.93	5.71
6501	F	66.31	64.9	1.41
6502	F	-	-	-
6701	F	66.05	60.5	5.55
7501	F	66.75	63.41	3.34
7502	F	66.64	63.12	3.52
7503	F	66.73	65.52	1.21
7504	F	66.62	65.23	1.39
7601	F	67.37	-	-
7602	F	67.26	61.95	5.31
7701	F	67.18	61.37	5.81
8501	F	65.87	64.65	1.22
8502	F	66.13	64.36	1.77
8503	F	65.84	63.98	1.86
1852	S	62.49	59.74	2.75
2551	S	-	61.12	-
2651	S	63.75	60.26	3.49
2751	S	62.73	60.14	2.59
3551	S	-	60.66	-
4551	S	-	-	-
4552	S	-	-	-
4553	S	-	-	-
4554	S	-	-	-
	S			
4951		63.93	60.28	3.65
5551	S	-	-	-
5552	S	-	-	-
5851	S	65.61	61.67	3.94
5852	S	-	-	-
5853	S	65.61	61.33	4.28
5854	S	-	-	-
6551	S	66.38	64.8	1.58
6552	S	-	64.54	-
6553	S	66.33	64.09	2.24
6554	S	66.03	-	-
6555	S	-	-	-
6751	S	66.2	62.25	3.95
7551	S	66.79	63.38	3.41
7552	S	66.67	63.36	3.31
7553	S	-	64.88	-
7554	S	66.54	64.84	1.7
7555	S	66.46	64.67	1.79
7556	S	66.76	64.48	2.28
7557	S	66.66	64.28	2.38
7651	S	67.36	63.04	4.32
7652	S	67.58	62.78	4.8
7751	S	67.7	62.54	5.16
8551	S	66	64.23	1.77
8552	S	65.83	64.04	1.79
8553	S	-	64.27	-
8554	S	66.1	63.82	2.28
8555	S	65.82	63.64	2.18
8556	S	-	64.91	-

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert
		l	1	

APPENDIX 7

StantecDrainage Strategy

Job Name: Land at Caldecote Farm, Newport Pagnell

Job No: 38748

Note No: TN2015/001 Rev B

Date: 5th July 2018 – Updated 28th July 2021

Prepared By: J Balzer

Subject: Preliminary Surface Water Drainage Strategy

Item	Subject
1.	Introduction
	This Technical Note has been prepared by Stantec UK Ltd on behalf of Newlands Developments in support of an outline planning application comprising of the erection of two storage and distribution units (Class B8) with associated access, car parking, servicing, landscaping, earthworks and drainage due south of Newport Pagnell, Buckinghamshire. This Technical Note sets out the design parameters, constraints and assumptions used to prepare the Preliminary Surface Water Drainage Strategy.
	This Technical Note is to be appended to BWB Consulting Ltd's Flood Risk Assessment (FRA) produced for the site.
	Peter Haddon & Partners Architects proposed site plan 4179-1 SK015 Rev P45 has been included in Appendix A .
	The Surface Water Drainage Strategy has been prepared in accordance with Milton Keynes Council's Surface Water Drainage – Guidance for Planning Applications as well as current best practice guidance in relation to Sustainable Urban Drainage Systems (SuDS).
	Liaison with the Bedford Group of Internal Drainage Boards (IDB) has been undertaken by BWB Consulting Ltd and a maximum allowable discharge rate for the proposed development agreed, refer to Item 4 'Site Wide Surface Water Management Strategy'. An anticipated point of outfall has also been identified at an unnamed ditchcourse to the north of the development site that lies within the jurisdiction of the IDB. The associated correspondence with the IDB is located within Appendix B .
2.	Proposed Development Site
	Site Location
	The 18.72ha existing site is predominantly greenfield and is located due south of the town of Newport Pagnell, and to the north east of Milton Keynes. It is bound on its western and southern extents by the M1 motorway and on its eastern extent by Willen Road. The H3 Monks Way runs along the northern boundary.
	To the west of the development and the M1 is the Tongwell Industrial Estate whilst to the east and north of the development there is existing residential / arable field.
	The site has previously been used as a quarry for the extraction of sand and gravel (between approximately 2010 and 2014). This quarry has since been infilled with in-situ overburden and inert fill materials.

^{\\}Npt-vfps-001\npt\\Projects\\38748 Caldecote Farm, Newport Pagnell\\Word\\Technical Notes\\Surface Water\\TN2015-001 Rev B SW Drainage Strategy Technical Note FINAL.docx

Item	Subject
	Areas of standing water have previously been observed within the south east end of the site, these areas may be associated with the existing earthworks on site.
	The approximate OS grid reference for the centre of the development site is NGR 487595; 242165. The general location of the site is indicated on Stantec Drawing 38748/100/004 – 'Location Plan' contained in Appendix C .
	Existing Topography and Drainage Catchments
	Ground levels vary between approximately 59.0 to 62.5m AOD along the western / southern boundary, to approximately 58.0m AOD in the north / east corner of the site.
	The development site consists of a single surface water drainage catchment in its existing form, outfalling towards the existing highway ditchcourses that bound the site to the north and east. These highway ditchcourse ultimately outfall to the Tongwell Brook.
	The site topographical survey, catchment areas and the existing drainage features are indicated on Stantec Drawing 38748/100/011 – 'Preliminary Surface Water Drainage Strategy' (Appendix C).
	The topographical survey undertaken by Greenhatch Ltd and indicated on Drawings:-
	 38748/100/022 – 'Willen Road Topographical Survey North'; 38748/100/023 – 'Willen Road Topographical Survey South';
	and located within Appendix D indicates that beyond the timber post and rail boundary fence bounding the development, the site is bound on its eastern and northern extents by highway drainage ditches between 500mm and 900mm deep.
	Existing Watercourses and Water Features
	The existing watercourses and water features described in this Section are indicated on Stantec Drawing 38748/100/011 – 'Preliminary Surface Water Drainage Strategy' (Appendix C).
	There are two existing ditchcourse located within the site, one is located along the eastern boundary of the site which runs from the southern point of the site near the M1 to the existing access into the site. This ditchcourse appears to receive highway run-off from Willen Road, although this drain is located within the site boundary. The other ditchcourse is located on site near to the existing bunds and may be associated with the former quarry works.
	The Tongwell Brook is located approximately 120m north of the proposed development and flows from the north west to the north east and is classed as an Environment Agency (EA) Main River. The River Ouzel is located approximately 600m to the east of the development, which the Tongwell Brook discharges into.
	An unnamed watercourse runs parallel with the Tongwell Brook, to the south of Tongwell Lane. This is under the jurisdiction of the IDB and is referenced as '18a' on the plan provided by the IDB which can be found within Appendix B .
	A review of historical highway drainage design drawings, from improvement works to the A422 / H3 Monks Way and the Marsh End Road Roundabout undertaken in 1990, indicates that surface water run-off generated from the proposed development site discharge to the highway drainage ditchcourse located along the northern extents of the site, via the 2No. on site ditchcourse. These records indicate this highway drainage ditchcourse once conveyed surface water to 2No. culverts which conveyed water north under the A422 / H3 Monks way before discharging into ditchcourses that ultimately discharged into the Tongwell Brook approximately 120m north of the site.

Item	Subject
	The records also indicate that a 3 rd culvert once conveyed surface water in a west east direction under Willen Road, from the highway drainage ditchcourse at the north east corner of the site, before continuing onwards through a series of land drains.
	During a site visit, it was noted by the Design Team that these culverts could not be located.
	Historic satellite imagery available on Google Earth indicates that during the period 2000 - 2005, the culverts were visible, however, they are no longer visible onsite.
	Existing Surface Water Drainage Infrastructure
	The site is predominantly undeveloped agricultural land, which currently contains no existing surface water drainage and is not connected to any existing off-site surface water drainage infrastructure. However, this would need to be confirmed on site before detailed design commences.
	There may be some surface water drainage infrastructure associated with the gravel workings to the south of the site.
	The site in part served by the highway drainage ditchcourses that bound the sites northern and eastern extents.
	The Incumbent Sewerage Undertaker is Anglian Water Services Limited (AWS). A review of their asset records supplied (a copy of which is contained in Appendix E), indicates that there are no AWS public surface water sewers within the vicinity of the proposed development. Therefore, AWS will be unable to provide the site with a feasible solution of surface water disposal within the current assets.
3.	Highway Improvement Works and Highway Drainage
	As part of the proposed development site, highway improvement works are required to accommodate the likely increase in traffic flows generated by the proposed commercial development. This includes increasing the size of the Marsh End Road junction to the north east of the development site and the proposed signalised junction along Willen Road that serves the development itself.
	Due to these improvement works, and the increase in impermeable area, additional surface water attenuation is required.
	A pond to the south east of the Marsh End Road Roundabout is proposed to attenuate surface water run-off from the highway, and control its rate of discharge into the existing highway network, in order to prevent downstream flooding. This is required in accordance with the following legislation:-
	 The National Planning Policy Framework and associated guidance; The Water Framework Directive;
	 The Land Drainage Act 1991; and The Lead Local Flood Authority (Milton Keynes Council);
	The pond has been designed to attenuate the volume of surface water run-off from the increased impermeable area (over and above the existing paved surfaces) generated by the proposed improvements to the Marsh End Road Roundabout and widening of Willen Road. The storage volume requirements for this option have been calculated based on an additional impermeable area of 1.24ha. It is proposed that this area will be attenuated to 4l/s/ha, which gives a volume of attenuation required in the pond of 996m³. This will discharge into the existing highway drainage

\\Npt-vfps-001\npt\\Projects\\38748 Caldecote Farm, Newport Pagnell\\Word\\Technical Notes\\Surface Water\\TN2015-001 Rev B SW Drainage Strategy Technical Note FINAL.docx

Item	Subject
	network on the southern side of the A422 at the appropriate controlled rate. This pond has been indicated on Stantec Drawing 38748/100/011 (Appendix C).
4.	Site Wide Surface Water Management Strategy
	The proposed development site has been split up into two drainage networks based on the masterplan for the site and existing site topography. The proposed development is to be served by a series of above and below ground attenuation features. These attenuation features will provide storage for extreme storm events, in order to limit the surface water discharge to the agreed rate of 4l/s/ha as agreed with the IDB. This has been indicated on Stantec Drawing 38748/100/011 (Appendix C).
	Surface water run-off from each network will drain to its respective attenuation features via a piped network which will ultimately discharge to the wider surface water drainage network via a proposed surface water pumping station.
	The surface water pumping station will be located along the northern extents of the development, and will discharge at a maximum rate of 53.6 l/s based on the maximum allowable discharge of 4l/s/ha, as agreed with the IDB to the unnamed watercourse (reference 18a) via a rising main. The rising main will be laid within land to the north of the proposed development which is within control of the applicant.
	Surface Water Drainage Discharge Options
	The Building Regulations Approved Document H3 stipulates that rainwater from roofs and paved areas should discharge to one of the following, listed in order of priority:-
	 An adequate soakaway or some other adequate infiltration system; A watercourse or, where that is not practicable; A sewer;
	Therefore, the following options have been considered:-
	Option 1 – Infiltration
	With reference to the Geotechnical and Geo-environmental Ground Investigation, the site is underlain by a variable thickness of made ground comprising various types of backfill over Felmersham member and Glacial Till. It has been deemed that a soakaway drainage system would not be feasible due to the cohesive nature of the site. Refer to RSK Report ref: 313114-02 (00) Willen Road, Newport Pagnell Geotechnical and Geo-environmental ground investigation – Phase 2 June 2017, Section 8.3 within Appendix F .
	Option 2 – Discharge into the Existing Watercourses / Ditchcourse
	In order to replicate the existing greenfield drainage regime, the development site would need to discharge to the existing IDB watercourse (Ref 18a) flowing parallel to Tongwell Lane or the existing highway drainage ditchcourse along the northern extent of the development via a surface water pumping main.
	Option 3 – Discharge into Public / Private Sewer(s)
	As there are no AWS public surface water sewers within the vicinity of the proposed development, this option has been discounted.
	Therefore, Option 2 is the preferred method of surface water run-off discharge from this site.
	i de la companya de

IEC	TECHNICAL NOTE		
Item	Subject		
	Design Parameters		
	Discharge Rates A maximum allowable discharge rate from the proposed development of 4l/s/ha has been agreed with the IDB for up to and including a 1 in 100 year event plus climate change.		
	Flood Estimation Handbook The design of surface water attenuation provision will be undertaken using catchment specific		

The design of surface water attenuation provision will be undertaken using catchment specific rainfall parameters derived from the Flood Estimation Handbook (FEH) in accordance with industry standard practice, a copy of which is included within **Appendix G** for reference.

Volumetric Run-off Coefficient for Design of the Attenuation Provision

A volumetric run-off coefficient (cv) of 0.85 will be utilised in the sizing of the surface water attenuation provision in accordance with industry standard practice.

Impermeable Areas

The proposed impermeable areas are taken from Peter Haddon & Partners Architects Drawing 4179-1 SK015 Rev P45. Table 1 below shows total areas and total impermeable areas for the development:

Zone	Total Area (ha)	Total Imp Area (ha)
Zone 1 (Including Site Access)	10.04	7.49
Zone 2	8.68	5.91
Total	18.72	13.40

Table 1: Summary of Site Wide Impermeable Area

Piped Surface Water Drainage System

The proposed surface water drainage systems will be designed in accordance with Sewers for Adoption 6th Edition.

The proposed piped surface water drainage system will be designed to ensure self-cleansing velocities are achieved in the 1 in 1 year event, utilising:-

- Flood Studies Report (FSR) rainfall data (industry standard practice);
- A volumetric run-off coefficient (cv) of 0.75 in accordance with industry standard practice;
- MicroDrainage design software, such that the piped drainage network will have no above soffit surcharging in the 1 in 1 year rainfall event and no above ground flooding in the 1 in 30 year rainfall event, as per requirements of the Sewers for Adoption (SfA);

All SuDS features will be designed in accordance with guidance given by Milton Keynes Council (MKC) as Lead Local Flood Authority (LLFA). Highway drainage will be designed in accordance with the requirements of the Local Highway Authority (MKC). Any private systems will comply with the requirements of Building Regulations: Approved Document Part H.

Climate Change

The capacity of the proposed surface water attenuation features will be designed to accommodate a 1 in 100 year event with an additional allowance of 40% for an increase in peak rainfall intensity due to climate change, in accordance with National Planning Policy Framework (NPPF) guidance.

ILC	HNICAL NOTE					
Item	Subject					
	Attenuation Proposals The storage volume requirements have been calculated based on the estimation of the impermeable areas as indicated on Peter Haddon & Partners Architects Drawing 4179-1 SK015 Rev P45. The required attenuation volumes have been calculated using MicroDrainage Quick Storage Estimate based on a limiting discharge of 4l/s/ha for rainfall event up to and including a 1 in 100 year event with an 40% additional allowance for Climate Change. It is proposed that surface water run-off from Zone 1 and 2 will be attenuated to 4l/s/ha, as agreed with the IDB. The impermeable areas, limiting discharge rates and storage volumes required are					
	zone	Contributing Impermeable Area (ha)	Discharge Rate 4l/s/ha (l/s)	Total Attenuation Required (m³)	Attenuation Features	
	Zone 1 (Including Site Access)	7.49	29.96	6,701	On Site Ponds, Underground Storage	
	Zone 2	5.91	23.64	5,291	On Site Ponds, Underground Storage	
	Highway Improvement Works	1.24	5.00	996	Off Site Pond	
	All attenuation for the developme underground tanks (tanks located have a minimum freeboard of 300 for any residual risk such as blockers.)	d as far as practica Omm (as set out w kage or pump failu	ble within the ca ithin CIRIA C75 ire during an ext	ar parking areas) 3 – The SuDS M	. Each pond will anual) to allow	
5.	SuDS Hierarchy – Water Qualit	y and Pollution C	ontrol			
	Surface water run-off currently flows into the existing highway drainage ditchcourse along the northern extents of the development. Measures will be incorporated within the onsite surface water drainage system to ensure that water quality, biodiversity and ecology within the ditchcourse are maintained to the highest standards.					
	Pollution control is to be provided by embedding the concept of the surface water 'management train' (also referred to as the 'treatment train') within the surface water management strategy, as set out in CIRIA C753 – The SuDS Manual.					

Item	Subject
	CIRIA C753 sets out a hierarchy of techniques within the management train, as follows:-
	 Prevention – the use of good site design and site housekeeping measures to prevent run-off and pollution (e.g. sweeping to remove surface dust and detritus from car parks) and rainwater re-use / harvesting. Prevention policies generally included within the site management plan; Source control – control of run-off at or very near its source (e.g. soakaways, other infiltration methods, green roofs, porous pavements); Site control – management of water in a local area or site (e.g. routing water from building roofs and car parks to a large soakaway, infiltration or detention basin); Regional control – management of run-off from a site or several sites, typically in a balancing pond or wetland;
	All of the above have been considered within the proposals. Measures will be incorporated within the surface water drainage system and the management train to ensure that water quality, bio-diversity and ecology are maintained to the highest standards as required by the EU Water Framework Directive.
	Water quality and pollution control will be provided by adopting the concept of the surface water 'management train' (also referred to as the 'treatment train') within the surface water management strategy, as set out in CIRIA C753 – 'The SuDS Manual' and provision for the following will be made:-
	Trapped gullies and oil separators located within the lorry / car parks;
	 Catchpit manholes to be used; Planting within ponds to provide filtration; Filter drains;
	All of which will be looked at further at detailed design stage.
	Therefore, as a minimum prior to entering the SuDS features, surface water will be intercepted by trapped gullies. After which the majority of surface water will flow through multiple SuDS features (ponds) to ensure that the maximum amount of water is treated during its journey through the SuDS train. This will maximise the amount of pollutants removed from the water prior to its discharge from the site.
6.	Ownership and Maintenance
	Piped Network The surface water sewers will be designed to adoptable standards as a source of best practice, but are not proposed to be offered for adoption at this time and will be maintained privately.
	Attenuation Ponds Proposed attenuation features (Ponds / Underground Tanks) are anticipated to be maintained privately.

Item		Subject														
	The table below (taken from CIRIA C793) details maintenance activities and suggested frequency of undertaking:-															
	<u> </u>															
	TABLE Typical key SuDS components operation and maintenance activities (for full specifications, see 32.1 Chapters 11–23)															
	Operation and maintenance activity SuDS component															
	ns on the part of															
				usin	asin		nfiltration trench		rage	Pervious pavement	Swale/bioretention/ trees			Proprietary treatment systems		
				9	Detention basin	nfiltration basin	vay	tion ti	rain	Modular storage	us pa	bioret	trip	roofs	tary ent sy	
			Pond	Wetland	etenti	filtra	Soakaway	filtra	Filter drain	odula	ervio	Swale/I	Filter strip	Green roofs	Proprietary treatment s	
		>	Δ	드	Ň	트	正	Ś	Ď	ğ Ş	Œ	Ö	£ £			
	Regular maintenance Inspection															
		Litter and debris removal		•			_			_					_	
		Grass cutting	-	-	-	П		-	П		_	-	Н			
		Weed and invasive plant control	_	_	_	_		_	_	_	_		_			
		Shrub management (including pruning)	_	_	_	_					_		_			
		Shoreline vegetation management														
		Aquatic vegetation management	П	П												
	Occasional maintenance															
		Sediment management ¹													•	
		Vegetation replacement														
		Vacuum sweeping and brushing														
	Remedial maintenance															
		Structure rehabilitation /repair														
		Infiltration surface reconditioning														
	Key ■ will be required															
	may be required															
		Sediment should be collected and managed in pre-tr	eatm	ent sy	stem	s, ups	trean	n of th	ne mai	n dev	ice.					

Item	Subject								
7.	Conclusion and Summary								
	Stantec have been engaged by Newlands Developments to prepare a site specific Preliminary Surface Water Drainage Strategy to be appended to BWB's FRA in support of an outline planning application for the proposed development Land at Caldecote Farm, Newport Pagnell.								
	This preliminary surface water drainage strategy complies with the 'Land at Caldecote Farm, Newport Pagnell Flood Risk Assessment' (FRA) (BWB report ref NPG-BWB-EWE-XX-RP-YE-0001_FRA) and in accordance with guidelines set out by the LLFA and AWS. The assessment may be summarised as follows:-								
	• The surface water drainage strategy is based upon the use of SuDS, the principles of which are set out by the Environment Agency as well as National, Regional and local policies which require that post development run-off quantity and quality matches the existing greenfield nature of the catchment;								
	 In order to replicate the existing greenfield drainage, the development will discharge into the existing IDB watercourse Reference 18a with discharge rates limited to 4l/s/ha, as agreed with the IDB; 								
	 The development will be drained by a gravity surface water drainage system to a private surface water pumping station, designed in accordance with adoptable standards; 								
	 Surface water run-off from the development will be stored in surface water ponds and underground tanks located strategically within the development; 								
	 The attenuation ponds and underground storage have been sized to accommodate a 1 in 100 year event with an 40% additional allowance for Climate Change in accordance with NPPF guidelines; 								

DOCUMENT ISSUE RECORD

Technical Note No	Rev	Date	Prepared	Checked	Reviewed (Discipline Lead)	Approved (Project Director)
38748/2015/TN001	Α	21/05/19	JB	SG	JSH	JSH
38748/2015/TN001	В	28/07/21	JB	SG	JSH	JSH

This report has been prepared by Stantec UK Limited ('Stantec') on behalf of its client to whom this report is addressed ('Client') in connection with the project described in this report and takes into account the Client's particular instructions and requirements. This report was prepared in accordance with the professional services appointment under which Stantec was appointed by its Client. This report is not intended for and should not be relied on by any third party (i.e. parties other than the Client). Stantec accepts no duty or responsibility (including in negligence) to any party other than the Client and disclaims all liability of any nature whatsoever to any such party in respect of this report.

T: +44 (0)1604 878 300 E: pba.Northampton@stantec.com

\\Npt-vfps-001\npt\\Projects\38748 Caldecote Farm, Newport Pagnell\\Word\\Technical Notes\\Surface Water\\TN2015-001 Rev B SW Drainage Strategy Technical Note FINAL.docx

Appendix A

Peter Haddon & Partners Architects Drawing 4179-1 SK015 Rev P45 – 'Proposed Master Plan';

Stantec

TECHNICAL NOTE

Appendix B

IDB Correspondence;

Robert Ward

From: Trevor Skelding .uk>

Sent: 24 October 2017 10:26

To: Robert Ward

Subject: RE: Request for Information - Land at Caldecote Farm, Newport Pagnell

Attachments: Caldecote.pdf

Robert

For your information I have attached a plan indicating the extent of the Board's district relative to your site. Please note that although no ditches are shown on the plan, any minor land drainage ditch found within the Board's area will be subject to its statutory control.

No flood records exist for this location. Any proposed surface water discharge into the land drainage system will be subject to the Board's agreement and consent and should be based on the equivalent of a maximum of 4 l/s per impermeable hectare.

Regards

Trevor Skelding MSc IEng MICE Principal Engineer

Bedford Group of Drainage Boards | Vale House | Broadmead Road | Stewartby | Bedfordshire | MK43 9ND

www.idbs.org.uk

The Bedford Group is a consortia of the Bedfordshire and River Ivel Internal Drainage Board, the Buckingham and River Ouzel Internal Drainage Board and the Alconbury and Ellington Internal Drainage Board.

Information in this message and any associated files attached to it, may be **confidential** and may be legally privileged. If you have received this email in error please notify the author immediately by return email or telephone and then delete this message and any associated attachments and do not copy it to anyone also

We may have to make this message and any reply to it public if asked to under the Freedom of Information Act, Data Protection Act or for litigation. Email messages and attachments sent to or from The Bedford Group of Drainage Board address may also be accessed by someone other than the sender or recipient, for business purposes.

The statements in this message are made by the individual who sent them and do not necessarily represent the views or opinions of The Bedford Group of Drainage Boards.

From: Robert Ward [

Sent: 23 October 2017 15:55

To: Frances Bowler

Subject: Request for Information - Land at Caldecote Farm, Newport Pagnell

Dear Sir/Madam,

I'm an engineer at BWB Consulting Ltd, our team deal with flood risk and flood risk assessment. We are assessing the above site in terms of flood risk and wondered if you had any relevant information for the site or surface water drainage advice in particular any information regarding; ditches and discharge from the site, allowable discharge rates and information on any water which are IDB managed.


Please find attached plan showing the location of the site. Your website indicates that the site is within close proximity to IDB watercourses 18a, 18b and 19, for which I cannot find any other record or information on.

Please feel free to contact me if you require any further information. I look forward to hearing from you.

Kind Regards

Robert Ward

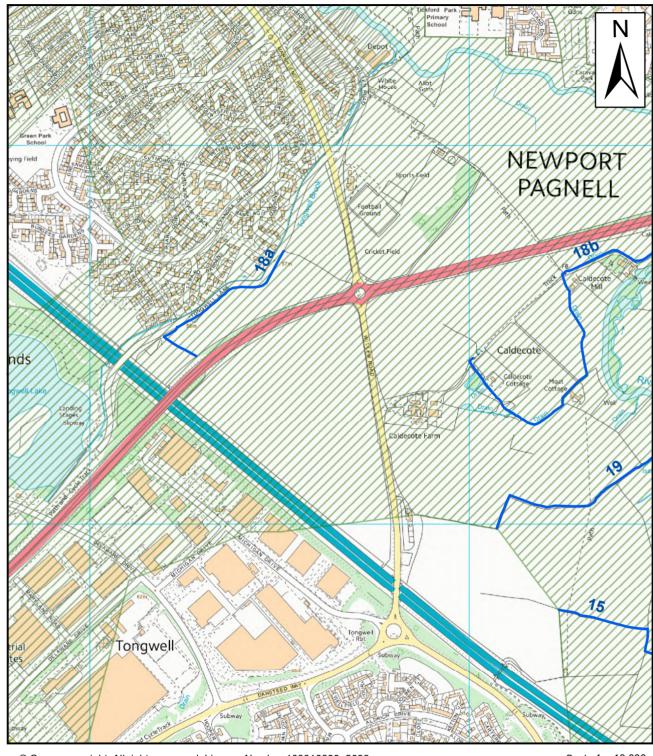
Engineer | BWB Consulting Limited

Registered in England and Wales

Registered Office: 5th Floor, Waterfront House, Station Street, Nottingham, NG2 3DQ

Company No. 5265863

VAT Reg No. 648 1142 45


This email (including any attachments) contains confidential information. If you are not the intended recipient please notify us immediately by replying to this email and delete this email from your system without reading, using, copying or disseminating it or placing any reliance upon its contents. Email is not a secure medium and we cannot accept liability for any breaches of confidence arising through use of email. Any opinions expressed in this email (including any attachments) are those of the author and do not necessarily reflect the views of BWB Consulting Limited. We will not accept responsibility for any commitments made by our employees outside the scope of our business. We do not warrant the accuracy or completeness of such information. Viruses: please note that we do not accept any liability for viruses and it is your responsibility to scan the attachments (if any) using suitable anti-virus software.

Scanned by Ignite Email Filtering Service - Ignite's comprehensive cloud based email content security solution. For more information please visit www.ignite.co.uk

Bedford Group of Drainage Boards

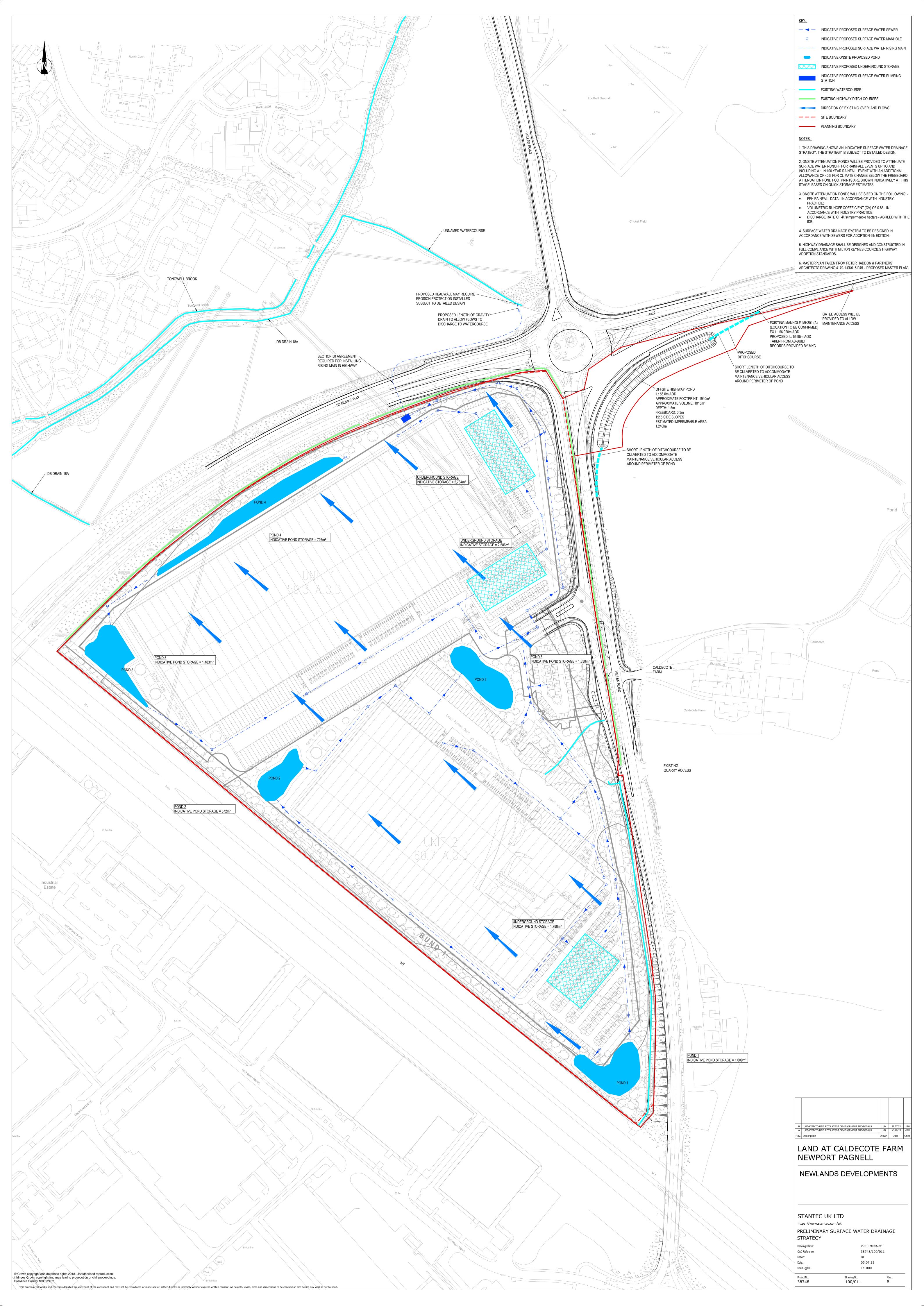
Buckingham & River Ouzel

 $\ensuremath{\texttt{©}}$ Crown copyright. All rights reserved. Licence Number 100018880, 2003

Buckingham and River Ouzel IDB

Scale 1 = 10,000

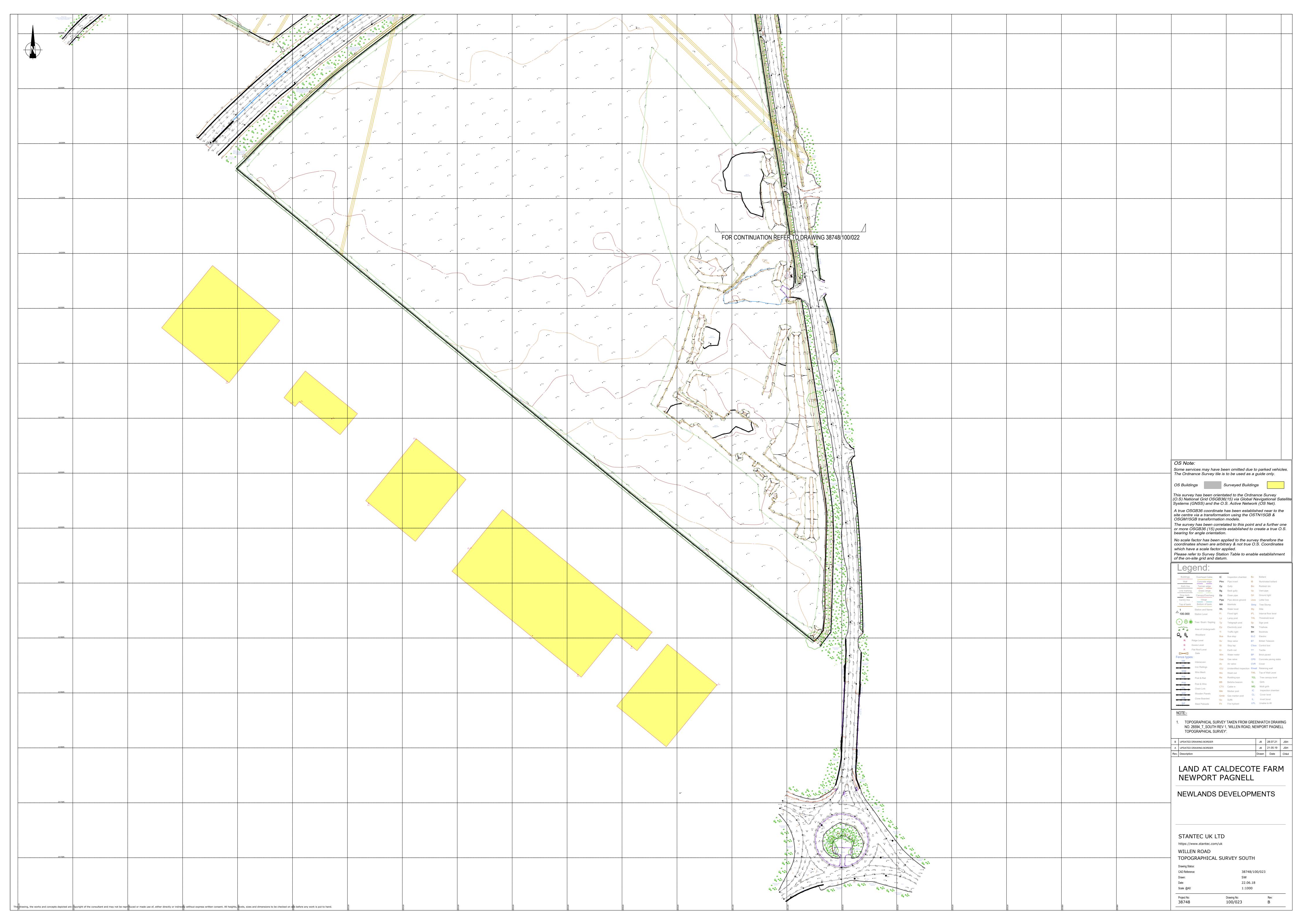
Legend — IDB Watercourse 0 100 200 400 IDB District BOARD Caldecote Farm



Appendix C

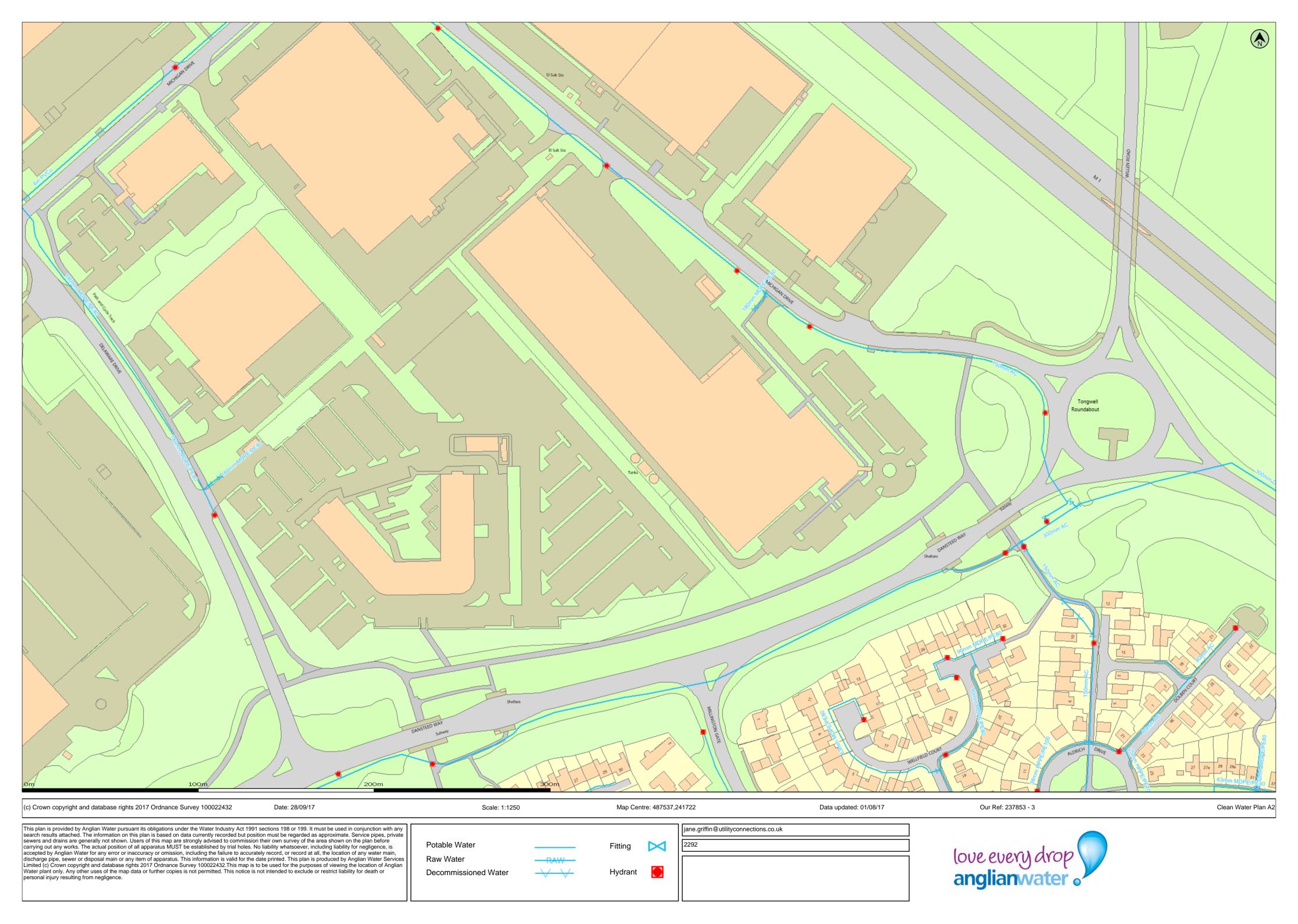
Stantec Drawings

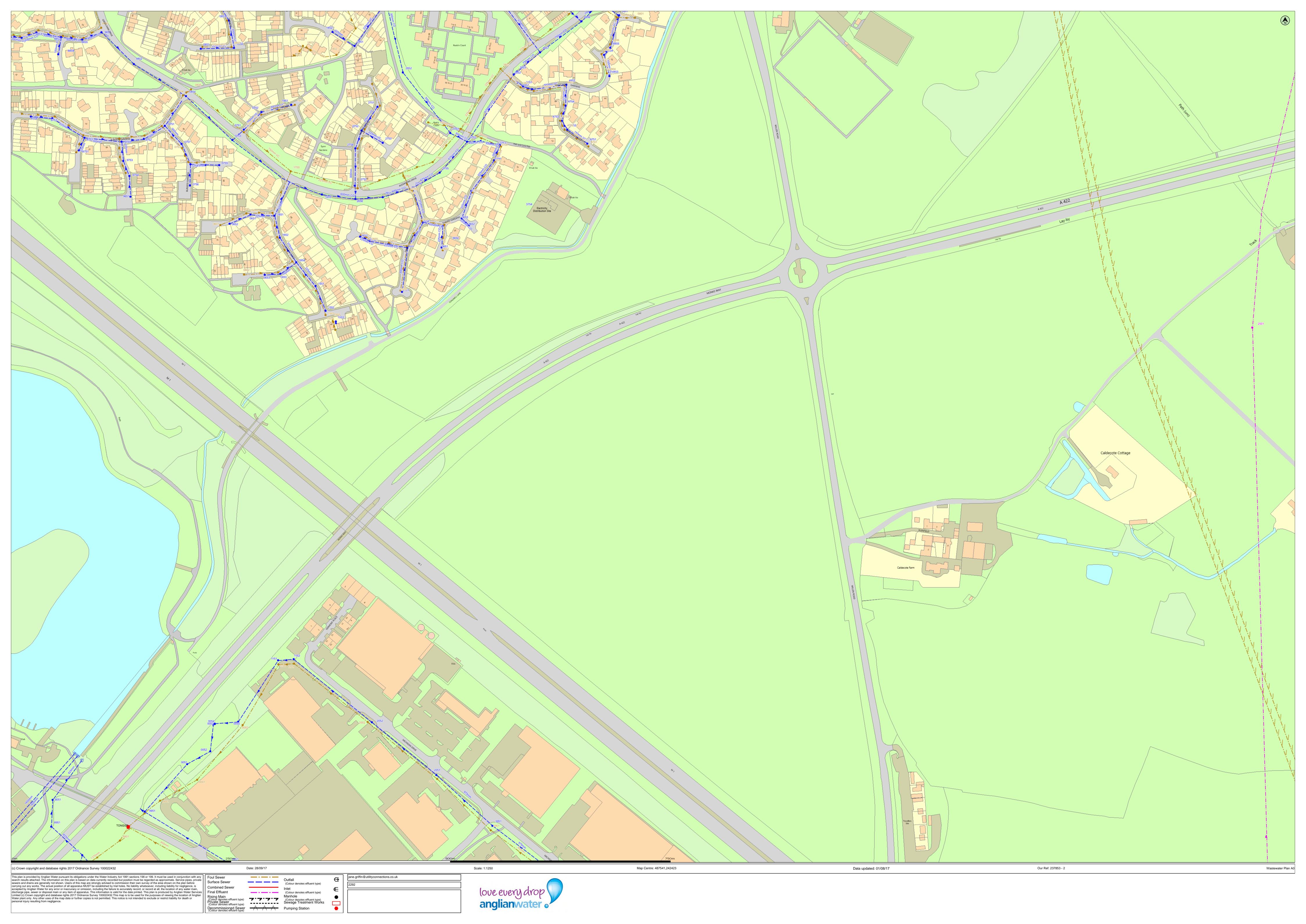
38748/100/004 Rev C – 'Location Plan'; 38748/100/011 Rev B – 'Preliminary Surface Water Drainage Strategy';



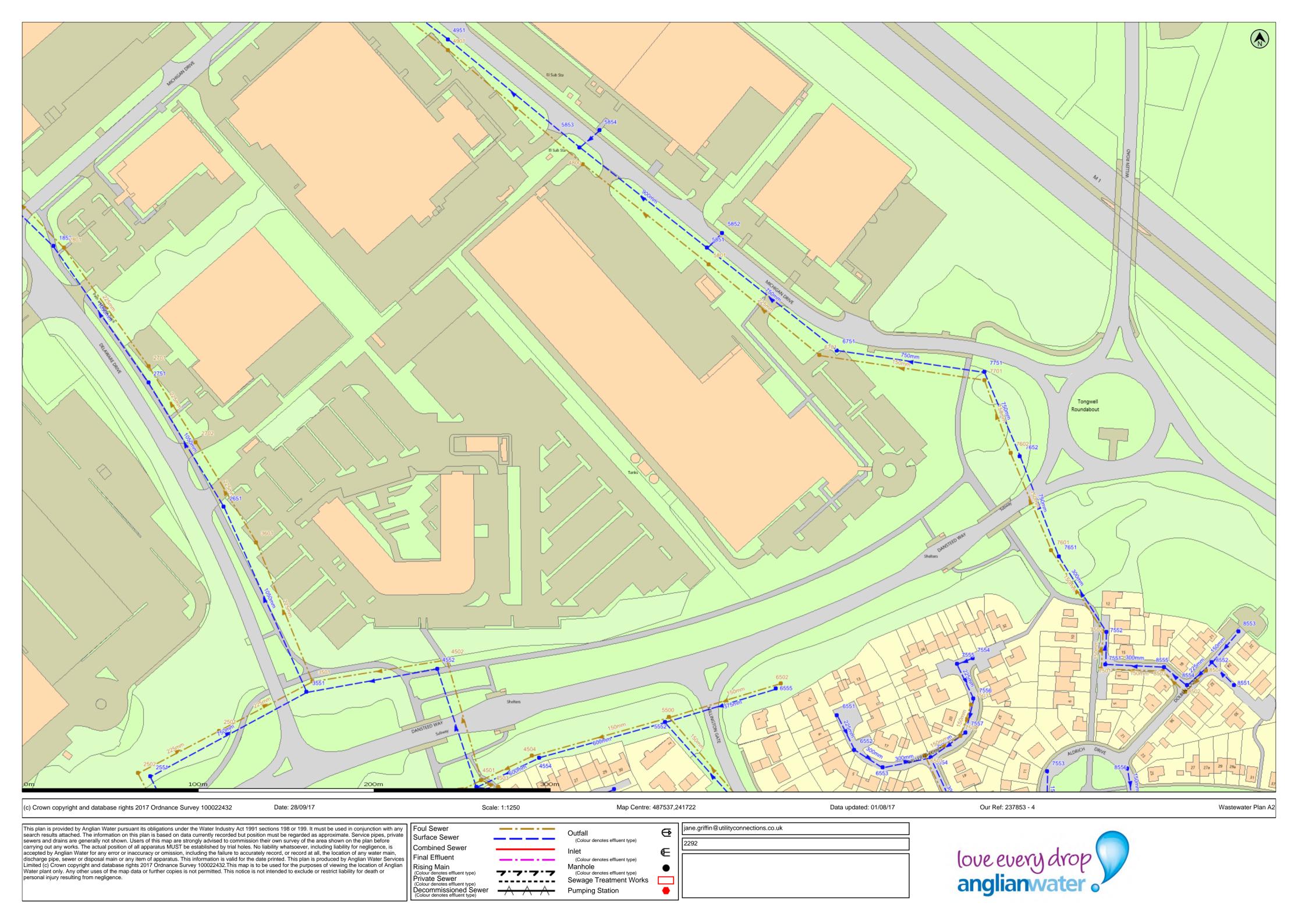
Appendix D

 $38748/100/022\ Rev\ B$ – 'Willen Road Topographical Survey North'; $38748/100/023\ Rev\ B$ – 'Willen Road Topographical Survey South';


Stantec


TECHNICAL NOTE

Appendix E


Anglian Water Services Limited Asset Records;

Manhole Reference Easting Northing Liquid Type Cover Level Invert Level Depth to Invert	Manhole Reference Easting Northing Liquid Type Cover Level Invert Level Depth to Invert	Manhole Reference Easting Northing Liquid Type Cover Level Invert Level Depth to Invert	Manhole Reference Easting Northing Liquid Type Cover Level Invert Level Depth to Invert	Manhole Reference Easting Northing Liquid Type Cover Level Invert Level Depth to Invert	Manhole Reference Easting Northing Liquid Type Cover Level Invert Level Depth to Invert
2501	3852 487380 242832 S 57.31 55.48 1.83 3853 487386 242838 S 57.42 55.41 2.01 3951 487358 241980 S 62.15 59.5 2.65				
0600 487078 242677 F 59.32 56.85 2.47 0601 487048 242663 F 59.77 58.27 1.5	4751 487466 242756 S 57.21 56.21 1 4752 487443 242772 S 57.28 56.07 1.21				
0602 487075 242607 F 58.892 57.69 1.202 0701 487095 242789 F 59.07 56.9 2.17	4753 487437 242782 S 57.22 55.88 1.34 4754 487441 242799 S 56.98 55.78 1.2				
0702 487075 242769 F 59.22 56.54 2.68 0703 487005 242751 F 61.12 58.3 2.82	4851 487442 242823 S 56.83 55.72 1.11				
0704 487012 242735 F 60.77 58.37 2.4 0705 487030 242735 F 60.49 58.44 2.05	4853 487491 242833 S 56.55 55.67 0.88 4854 487485 242857 S 56.74 55.28 1.46				
0801 487028 242866 F 60.21 58.86 1.35 0802 487056 242896 F 59.34 57.97 1.37	4855 487492 242865 S 56.55 55.2 1.35 4856 487459 242895 S 56.81 55.12 1.69 4857 487412 242860 S 57.44 55.26 2.18				
0803 487061 242866 F 59.68 58.41 1.27 0804 487006 242811 F 60.644 57.582 3.062 0805 487015 242818 F - - -	4857 487412 242860 S 57.44 55.26 2.18 4951 487449 242904 S 56.56 55.52 1.04 5951 487502 242902 S 56.55 55.11 1.44				
0901 487005 241944 F 60.95 57.56 3.39 1100 487114 242164 F	8051 486858 242010 S 8751 486887 242748 S 64.39 62.58 1.81				
1101 487132 242164 F 1500 487157 242589 F 58.22 57.07 1.15	8752 486894 242763 S 64.4 62.47 1.93 8753 486857 242785 S 65.71 64.18 1.53				
1501 487168 242561 F 58.32 57.17 1.15 1502 487176 242557 F - - -	8754 486833 242787 S 66.52 64.72 1.8 8851 486822 242876 S 65.97 64.02 1.95				
1503	8852 486867 242877 S 64.71 62.83 1.88 8853 486839 242882 S 65.49 63.74 1.75				
1600 487108 242677 F 58.9 56.41 2.49 1601 487113 242649 F 58.63 56.53 2.1 1602 487144 242640 F 58.66 57.16 4.4	8854 486864 242858 S 64.83 63.34 1.49 8855 486891 242874 S 63.8 61.89 1.91				
1602 467114 242610 F 38.36 37.16 1.4 1603 487130 242622 F 58.43 56.85 1.58 1700 487128 242725 F 59.207 55.997 3.21	8952 486891 241947 S - 59.08 - 9651 486946 242696 S 62.31 61.26 1.05				
1801 487133 242800 F 58.75 57.19 1.56 1802 487181 242857 F - - -	9751 486985 242776 S 61.4 58.34 3.06 9752 486961 242761 S 62.23 60.43 1.8				
1803 487151 242862 F - - - 1804 487142 242867 F - - -	9753 486938 242736 S 62.67 60.94 1.73 9754 486945 242719 S 62.39 61.09 1.3				
1805	9755 486936 242758 S 63.01 60.82 2.19 9851 486913 242883 S 62.96 59.83 3.13 9852 486950 242846 S				
2500 487253 242589 F 58.065 56.775 1.29 2600 487220 242646 F 58.235 57.815 0.42	9951 486962 241996 S 61.88				
2601 487208 242652 F 58.405 56.005 2.4 2602 487278 242668 F 58.07 56.902 1.168					
2603 487260 242639 F 57.925 56.125 1.8 2704 487290 242735 F 58.53 55.18 3.35					
2706 487285 242780 F 58.64 55.51 3.13 2707 487258 242717 F					
2708 487267 242703 F 58.139 55.675 2.464 2709 487264 242703 F 58.093 55.663 2.43 2710 487204 242705 F 58.451 55.651 2.8					
2710 467204 242705 F 58.451 55.651 2.8 2711 487205 242751 F 58.748 56.168 2.58 2712 487213 242772 F 58.657 56.327 2.33					
2713 487230 242799 F 58.285 56.615 1.67 2800 487221 242824 F 58.318 56.888 1.43					
2801 487202 242887 F					
3601 487301 242635 F 57.745 56.485 1.26 3701 487322 242773 F 58.18 54.99 3.19 3702 487335 242700 F 57.655 56.455 1.2					
3703 487361 242736 F 58.039 55.639 2.4 3704 487368 242753 F 58.089 55.543 2.546					
3801 487390 242820 F 57.28 54.72 2.56 3802 487367 242841 F 57.57 54.62 2.95					
3803 487344 242809 F 58.07 54.88 3.19 3901 487356 241975 F 62.06 58.97 3.09					
4701 487467 242753 F 57.18 56.05 1.13 4702 487440 242772 F 57.28 55.69 1.59 4703 487435 242782 F 57.18 55.6 1.58					
4801 487439 242800 F 57.01 55.46 1.55 4802 487405 242816 F 57.15 55.05 2.1					
4803 487440 242821 F 56.84 55.28 1.56 4804 487488 242836 F 56.57 55.04 1.53					
4805 487482 242858 F 56.74 54.78 1.96 4806 487492 242869 F 56.52 54.67 1.85					
4807 487424 242886 F 56.94 54.15 2.79 4901 487499 242900 F 56.48 54.46 2.02 5801 487520 242899 F 56.67 54.9 1.77					
8700 486884 242746 F 64.38 62.44 1.94 8701 486892 242765 F 64.47 62.02 2.45					
8702 486860 242787 F 65.73 63.93 1.8 8703 486822 242790 F 66.75 64.74 2.01					
8802 486820 242878 F 65.99 64.53 1.46 8803 486841 242885 F 65.43 64.13 1.3					
8804 486893 242876 F 63.77 62.31 1.46 8805 486869 242879 F 64.54 63.13 1.41 9001 486980 242009 F					
9700 486981 242776 F 61.43 57.83 3.6 9701 486962 242765 F 62.21 60.04 2.17					
9702 486934 242741 F 62.8 60.63 2.17 9703 486941 242723 F 62.45 60.73 1.72					
9704 486933 242762 F 63.07 60.49 2.58 9800 486913 242888 F 62.91 61.01 1.9					
9901 486934 241963 F 61.54 58.73 2.81 0051 487010 242050 S					
0053					
0055 487068 242098 S - - - 0651 487083 242675 S 59.27 57.7 1.57					
0652 487059 242665 S 59.69 58.49 1.2 0653 487099 242607 S 58.63 57.683 0.947					
0751 487075 242772 S 59.26 56.97 2.29 0752 487095 242792 S 59.1 57.31 1.79 0753 487062 242760 S 58.97 56.3 2.67					
0754 487014 242733 S 60.74 58.71 2.03 0755 487047 242732 S 60.02 58.84 1.18					
0756 487014 242708 S 60.49 59.27 1.22 0757 487004 242756 S 61.05 58.56 2.49					
0851 487026 242864 S 60.21 58.37 1.84 0852 487064 242865 S 59.61 57.84 1.77 0853 487058 242896 S 59.38 57.24 2.14					
0854 487009 242810 S					
1152 487132 242170 S - - - 1551 487156 242594 S 58.31 57.16 1.15					
1552 487168 242566 S 58.39 57.29 1.1 1553 487180 242554 S - - - 4654 487440 242674 S - - -					
1651 487110 242674 S 58.81 56.45 2.36 1652 487116 242649 S 58.692 56.72 1.972 1653 487117 242608 S 58.52 57.55 0.97					
1653 487117 242608 S 58.52 57.55 0.97 1654 487135 242621 S 58.37 56.99 1.38 1655 487164 242698 S 58.888 56.248 2.64					
1851 487129 242800 S 58.58 57.4 1.18 1852 487176 242883 S 58.143 57.193 0.95					
2051 487294 242038 S 2052 487221 242098 S					
2551 487255 242587 S 58.05 56.85 1.2 2651 487233 242695 S 58.4 56.05 2.35 2652 487219 242645 S 58.29 57.03 1.26					
2652 487219 242645 S 58.29 57.03 1.26 2653 487207 242650 S 58.42 57.22 1.2 2654 487279 242667 S 58.045 56.295 1.75					
2655 487261 242638 S 57.95 56.46 1.49 2656 487202 242693 S 58.493 56.113 2.38					
2751 487227 242798 S 58.36 56.97 1.39 2752 487209 242771 S 58.65 56.74 1.91					
2753 487233 242757 \$ 58.69 57.01 1.68 2755 487298 242723 \$ 58.13 55.79 2.34 2756 487267 242706 \$ 58.24 55.88 2.36					
2757 487201 242708 S 58.451 56.411 2.04 2758 487202 242750 S 58.796 56.596 2.2					
2851 487201 242867 S 58.64 57.07 1.57 2852 487256 242837 S 58.41 56.39 2.02					
3651 487300 242638 S 57.745 56.645 1.1 3652 487331 242663 S 57.7 56.6 1.1 3653 487323 242671 S 57.9 56.48 1.42					
3653 487323 242671 S 57.9 56.48 1.42 3654 487301 242662 S 58.05 56.55 1.5 3751 487310 242768 S 58.35 56.03 2.32					
3752 487329 242758 S 58.2 55.6 2.6 3753 487367 242755 S 58.169 56.126 2.043					
3754 487344 242759 S 58.259 55.909 2.35 3755 487334 242702 S 57.705 56.315 1.39 3756 487360 242737 S 58.054 56.186 1.868					
3756 487360 242737 S 58.054 56.186 1.868 3851 487393 242821 S 57.3 55.57 1.73					
					Our Ref: 237853 - 2

